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Pattern formation in interface depinning and other models: Erratically moving spatial structures

Supriya Krishnamurthy and Mustansir Barma
Theoretical Physics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

~Received 16 September 1997!

We study erratically moving spatial structures that are found in a driven interface in a random medium at the
depinning threshold. We introduce a bond-disordered variant of the Sneppen model and study the effect of
extremal dynamics on the morphology of the interface. We find evidence for the formation of a structure that
moves along with the growth site. The time average of the structure, which is defined with respect to the active
spot of growth, defines an activity-centered pattern. Extensive Monte Carlo simulations show that the pattern
has a tail that decays slowly, as a power law. To understand this sort of pattern formation, we write down an
approximate integral equation involving the local interface dynamics and long-ranged jumps of the growth
spot. We clarify the nature of the approximation by considering a model for which the integral equation is
exactly derivable from an extended master equation. Improvements to the equation are considered by adding a
second coupled equation that provides a self-consistent description. The pattern, which defines a one-point
correlation function, is shown to have a strong effect on ordinary space-fixed two-point correlation functions.
Finally we present evidence that this sort of pattern formation is not confined to the interface problem, but is
generic to situations in which the activity at successive time steps is correlated, such as, for instance, in several
other extremal models. We present numerical results for activity-centered patterns in the Bak-Sneppen model
of evolution and the Zaitsev model of low-temperature creep.@S1063-651X~98!07903-3#

PACS number~s!: 47.54.1r, 68.10.Gw, 05.40.1j, 47.55.Mh
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I. INTRODUCTION

Driven interfaces in random media present several f
tures of interest, with regard to both the morphology of t
moving interface as well as the dynamics of the growth p
cess. Experiments have been performed on several sor
systems, ranging from fluid flow in porous media@1–5# to
propagation of burning fronts@6#. These indicate that the
disorder in the medium affects the properties of the interf
in a crucial way. In particular, the large-distance scal
properties differ considerably from those of interfaces in u
form media. In both theoretical and experimental investi
tions, it is customary to characterize the spatial structure
the interface by itsroughness. The main point of this paper is
to show that there is sometimes an unusual sort of pat
formation @7# in the system, which results in the interfac
acquiring atime-averaged shape. In such situations, this pat
tern provides an alternative characterization of interface m
phology.

A customary measure of the roughness is provided by
exponenta, defined byW;La, whereW is the root mean
squared width of the interface andL is the size of the system
The experiments mentioned above, and others simila
these, report an anomalously large value ofa — large com-
pared to the predictions of existing theories for interfa
growth in nonrandom media@8#. It is recognized that the
quenched nature of the disorder in the medium is respons
for this difference in scaling properties of the interface. U
like thermal noise, which varies rapidly, a portion of th
interface subject to a quenched-noise environment contin
to experience the same forces until the growth process t
it forward to a new region. The pinning effect of quench
noise has a strong effect on the large scale properties o
interface.

Several theoretical models have been put forward to tr
account for the effect of quenched disorder on the proper
571063-651X/98/57~3!/2949~16!/$15.00
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of the interface; Ref.@9# gives an account of some of th
early work and the relationship to other problems involvi
pinning, while @10# is a recent review. Among various pro
posals put forward to explain anomalous roughening
theories based on continuum equations with quenched d
der @11–16#, the inclusion of noise with power-law ampli
tude @17,18# or long-ranged correlation@19–21#, power-law
distributions of pinning-center strengths@22#, as well as a
class of models with microscopic rules based on direc
percolation@5,23,24# and models that relate the large-sca
structure to the wetting properties of the invading fluid@26#.
A number of these models base the explanation of ano
lous roughening on the phenomenon of critical depinni
which is relevant to an interface just at the threshold of m
tion. In the opposite limit of large velocity, the interfac
encounters the disorder at any site only for a short tim
suggesting that the quenched nature of disorder is not im
tant in this limit, and the interface behaves much as in
nonrandom medium@14#. However, this is not true at low
velocities of the interface near the depinning threshold.
particular, the limit of zero velocity is thought to be a d
namical critical point@9# where the scaling properties of th
interface are strongly affected by the disorder.

In a certain class of models, the quenched disorder en
as barriers of random strengths that impede interface mot
The formation of infinitely long directed percolating paths
these barriers is of special significance, as such paths
block the entire interface effectively@5,23–25#. The model
proposed by Sneppen@24# involves ‘‘extremal’’ dynamics:
At each time step, the interface advances only along
weakest of the barriers. Extremal models were first int
duced much earlier, in the context of invasion percolation
two-phase fluid flow in porous media, with a nonwettin
fluid displacing a wetting one@27–29#. The predictions of
this invasion percolation model were borne out by expe
ments @30#. Dynamical correlation functions involving th
2949 © 1998 The American Physical Society
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2950 57SUPRIYA KRISHNAMURTHY AND MUSTANSIR BARMA
center of activity in invasion percolation obey scalin
@31,32#, and the process defines a self-organized critical p
nomenon@32#; the interface organizes itself to align alon
critical paths bordered by large barriers, without the nec
sity of tuning any external parameters. The model propo
by Sneppen@24# is a modification of the invasion percolatio
model, incorporating surface tension effects that prev
very strong local convolutions of the interface, resulting in
self-affine, rather than self-similar, geometry. An extrem
model close to the Sneppen model was shown to result@33#
from a model of wetting-fluid invasion, by considering a
interface advancing by merging meniscus arcs between a
cent pairs of pinning centers.

An interesting feature of extremal dynamics is that it
duces strong spatial correlation in sites at which growth
curs@34–36# at successive time steps. In this paper we int
duce and study a variant of the Sneppen model and show
the interface develops an interesting time-averaged struc
as a result of correlations. The defining equation for
structure is

C~r ![ 1
2 @^¹h„r 1R~ t !…&2m#, ~1!

whereR(t) is the position of the active site at timet, h(r 8)
denotes the height at the siter 8, ^•••& is a time average in
the steady state, andm is the overall slope of the interface
The unusual point is that this structureC(r ) is not fixed in
space, but moves with its center always at the growth s
which itself follows an erratic path. The moving origin
crucial to the definition, as time averages performed a
fixed point in space reveal no structure at all. This aver
structure defines a pattern, and we study its formation
merically and analytically.

Figure 1~a! depicts schematically the activity-centere
pattern in height gradients with respect to the moving orig
for the untilted (m50) interface. As can be seen, the inte
face develops an overall shape that is described by
height-gradient profileC(r ). The tail of the pattern falls

FIG. 1. A schematic picture of the activity-centered pattern in
untilted (m50) interface showing~a! the height gradient pattern a
defined in Eq.~1!, ~b! the interface profile obtained by integratin
the pattern in~a!. The discontinuity at the origin in~a! leads to a
cusp at the origin in~b!, implying that the active site is most likely
at the peak.
e-

s-
d

nt

l

ja-

-
-
at
re
e

e,

a
e

u-

,

he

slowly at large distances, as a power law. The correspond
height profile of the interfaceh(r ) with respect to the active
site is represented in Fig. 1~b!. The nature of the pattern i
sensitive to tilt, and Fig. 2 shows the height-gradient patt
and height profile for a tilted interface.

We propose that this pattern is a simple way of charac
izing a new aspect of the morphology of the interface. T
ditional ways of characterizing the morphology involve,
has already been mentioned, determining the roughness
ponenta. However, such a definition does not hone in on t
overall shapeof the interface. In situations such as the o
considered in this paper when the interface does develo
nontrivial structure, the pattern is a useful quantitative ch
acterization. An important point about the time-averaged p
tern is that Eq.~1! defines a one-point correlation function
As such, it would be expected to strongly influence the pr
erties of customary two-point correlation functions. W
verify this by numerically studying two-point correlation
Further we find that this sort of pattern formation is n
restricted only to the Sneppen model, but also occurs in o
extremal models, such as the Zaitsev model for lo
temperature creep@37# and the Bak-Sneppen model@38# of
biological evolution, albeit in other quantities.

The plan of this paper is as follows. In Sec. II we intr
duce our model and discuss the connection with the prob
of directed percolation, well established from earlier studi
In Sec. III, we discuss the correlations in the location
successive growth sites, a concept central to this paper
cause of its connection with pattern formation. In Secs.
and V we define the pattern and present numerical result
well as an integral equation, which provides an understa
ing of this sort of pattern formation. We define a model f
which the equation is exact and discuss how the approxi
tion can be improved. In Sec. VI, we discuss the issue
temporal correlations with a view to seeing how they affe
the pattern. In Sec. VII, we present our results for an or
nary two-point correlation function in our model and sho
that activity-centered pattern formation has to be taken i
account in order to understand some features in it. Sec

n FIG. 2. A schematic picture of the activity-centered pattern in
tilted interface (mÞ0), in ~a! height gradients~b! the interface
profile obtained by integrating the pattern in~a!. As can be seen in
~b!, there is a larger than nominal slope near the active site.
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57 2951PATTERN FORMATION IN INTERFACE DEPINNING . . .
VIII deals with pattern formation in other extremal mode
and we conclude with a summary of our results in Sec. I

II. EXTREMAL MODEL OF INTERFACE DEPINNING

The extremal-model description of fluid-fluid interfaces
porous media is valid when the wetting is dominated
capillary forces, and thermal fluctuations are not importa
In the extremal model, the interface advances along
weakest barrier just ahead of it. The appealing feature of
model is that it is self-organized critical; the dynamic
which involves searches for the global minimum at eve
step, automatically tunes the interface to a critical state at
depinning transition, without the necessity of fixing any e
ternal parameter. In the model proposed by Sneppen@24#, the
random medium is modeled by a square lattice in which
sites are assigned random numbersf P@0,1#. The random
numbers could signify, for instance, the pore sizes in a
rous medium. The interface is a directed path on this lat
and grows only at that perimeter bond with the small
value of the random number; after every such move, a lo
rearrangement process@39# ensures the absence of very lar
slopes.

Extremal dynamics has also been proposed to desc
very different situations — for instance, the phenomenon
low-temperature dislocation creep@37,33#, crack propagation
@40#, and biological evolution@38#. We will see in Sec. VIII
that the sort of pattern formation we find in the interfa
model occurs in these models as well.

A. The extremal bond model

We study a modified version of the Sneppen model in t
paper. In this version, hereafter referred to as the extre
bond model~EBM!, the interface is taken to be a directe
path on a square lattice~Fig. 3!, with tilted cylindrical
boundary conditions@41#, which ensure that the mean slop
is preserved. To every bondk on the lattice is preassigned
fixed random numberf k drawn from the interval@0,1#. The
interface grows at that bond, in front of the interface, wh
carries the smallest random number. The local growth ru
are the following: if the chosen minimal bond has a posit
~negative! slope, the sequence of links with negative~posi-
tive! slope just below~on the left! also advances, as illus

FIG. 3. The extremal bond model. The tilted interfaceII 8 ad-
vances along the extremal perimeter bondA and locally readjusts to
align along the dashed line. At the next instant, the activity mo
from A to A8. The corresponding configuration and local moves
the particle-hole model are also shown.SS8 is a stopper, whose
perimeter is fully occupied by diodes.
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trated in Fig. 3. This preserves the length of the interface
would happen in situations with very high surface tensio
The local dynamics of interface adjustment is similar to th
for the low-noise Toom interface in@42#; the models are
different in that the growth site is picked by the extremal ru
in our case, while it is picked stochastically in the Too
interface model.

The EBM differs from the Sneppen model in that th
length of the interface is a strict constant of the motion a
the f k’s are associated with bonds rather than sites. Wh
this modification does not change the values of any of
large-distance scaling properties of the Sneppen model, it
a few advantages. The interface aligns along directed sp
ning paths in a percolation problem, just as in the Snep
model. In our case, the corresponding percolation problem
the diode-resistor percolation problem@43#. On the square
lattice, it is dual to the directed bond percolation proble
@44#, which is relatively well studied. Another advantage
that the problem of interface growth in the EBM is conce
tually simplified by the existence of a known one-to-one c
respondence between the growing interface and a syste
hard-core particles moving on a ring. The two-dimensio
problem hence reduces to an effectively one-dimensio
one. This also facilitates the numerics. The corresponde
between the interface and the hard-core particles is deta
below.

Positive slope links of the interface are represented
particles (nj51) and negative-slope links by holes (nj50);
see Fig. 3. The difference in height of the interface betwe
sitesj 1 and j 2 is given byhj 2

2hj 1
5( j 5 j 1

j 2 (2nj21). In front

of each link of the interface is a bond with a random numb
f assigned to it. Correspondingly, the sitej with the particle
~hole! representing this link carries a random numberf j .
Just as for the interface, at each time step, activity is initia
at the site with the minimumf j . The update rules for the
interface translate to the following dynamics for particl
and holes. If the site with minimumf j contains a particle
~hole!, it exchanges with the first hole~particle! to the left
~right!. All sites hopped over, including the two which ex
change the particle and hole, are refreshed by assignin
new set off j ’s. This corresponds to the fact that the updat
portion of the interface moves ahead and meets a fresh s
f ’s on the square lattice. Because the number of posi
slope links ~and hence also the number of negative slo
links! is conserved for the interface, in the particle-hole t
minology, this implies that the number of particles is co
served. Hence we can define a densityr for particles on the
one-dimensional lattice. This density determines the m
slopem52r21 of the interface. An untilted interface cor
responds to half filling. The reference direction for determ
ing tilt is the easy direction of directed bond percolation
the square lattice, which is along the 45° line. Tilt refers
any density away from 0.5, which implies a slope differe
from 45°. The interface advances in a direction perpendi
lar to the direction of tilt and this translates to a nonze
current of particles on the ring.

B. Connection to diode-resistor percolation
and directed percolation

Extremal models of interface depinning make use o
correspondence to the diode resistor percolation~DRP! and

s
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2952 57SUPRIYA KRISHNAMURTHY AND MUSTANSIR BARMA
directed percolation~DP! problems to predict various prop
erties of the interface. In view of this, it is useful to reca
some facts about the DP and DRP processes.

In the directed percolation problem, bonds on a lattice
occupied with probabilityp. At some critical valuepc an
infinite directed path of occupied bonds~in which every step
is taken rightward or upward! first forms along a definite
direction; on a two-dimensional~2D! square lattice, this is
along the 45° direction. Forp.pc , The network of these
infinite paths forms an infinite connected cluster. For
rected bond percolation on a square lattice the value ofpc is
known to be.0.6446@44#. There are two distinct correlatio
lengths,j i along the easy direction andj' transverse to it,
both of which diverge asp→pc : j i;(p2pc)

2n i,j';(p
2pc)

2n', respectively. The values of these exponents
known to ben i.1.733 andn'.1.097@44#.

Suppose we have a single source point, and we ask w
portion of the plane can be reached from it via occup
directed bonds. Forp.pc this region is contained within a
cone with opening angle 2f5arctan(m) where m is the
slope of the edge of the cone with respect to the 45° dir
tion; the opening angle depends onp. This relation can be
inverted to find the critical probabilitypc(m) viz., the prob-
ability at which a connection first appears along the direct
with slopemÞ0. Correlation lengths along and perpendic
lar to this direction have exponentsn i51 andn'50.5 @44#.
We refer to the direction along 45° as untilted (m50); any
other slope is referred to as tilted.

In the diode-resistor percolation problem, every bond
occupied by a ‘‘diode’’~a one-way connection! with a prob-
ability p or a ‘‘resistor’’ ~a two-way connection! with a prob-
ability 12p. On a square lattice, the diodes all point up
right. Let us ask which regions of the plane are connecte
a given source point. Ifp50, a source point can reach th
entire quadrant of which it is the left corner. Asp decreases
from 1 to pc , the opening anglef8 of the connected region

FIG. 4. The boundary of the region reachable from the origin
diode-resistor percolation. For a nonzero fraction of resistors,
opening angle of the region is larger than 90° as shown. The da
line is an infinite path in the corresponding directed percolat
problem on the dual lattice.
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increases fromp/2 to p; beyond this, the entire plane can b
reached from the source point. The edge of the conne
region is bordered by diodes pointing rightward and upwa
which prevent it from spreading leftward and downwa
~Fig. 4!.

On the 2D square lattice, DP and DRP are dual to e
other @43#. The dual to a DRP configuration is construct
using the following rules. A diode in the DRP lattice
crossed by a diode in the dual lattice, whereas a resisto
crossed by an insulator~no connection! in the dual lattice.
Thus we recover the directed percolation problem on
dual lattice. The opening angles of the cones in the two pr
lems are related byf1f85p.

In the EBM, the random medium is modeled by cons
ering a square lattice with every bond assigned a rand
numberf k drawn from the interval@0,1#. For a certain trial
value f * , imagine occupying all bonds withf , f * by resis-
tors, and the rest with diodes. We thereby generate a D
configuration withp512 f * . When f * takes on the value
12pc , an infinite connected path of diodes is formed. Su
a path is called a ‘‘stopper,’’ and is significant for the d
namics of the EBM, as a moving interface with no overall t
will align with such stoppers from time to time@25#. When
the interface aligns along a stopper, all the bonds in fron
it are larger thanf c512pc @Fig. 5~a!#. Similarly a tilted
interface with slopem aligns along the edge of the cone wi

e
ed
n

FIG. 5. The steady state probabilityP( f ) of having a bond with
the value of the random number equal tof , in front of the ~a!
untilted and~b! tilted interface withr50.75, in the extremal bond
model. There is a tilt dependent threshold below which the pro
bilty of finding a bond with that value is very low. A system of siz
1000 was averaged over 107 configurations.
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57 2953PATTERN FORMATION IN INTERFACE DEPINNING . . .
the same slope and all the bonds in front of it are expecte
have a value larger thanf c(m)512pc(m). Since pc(m)
.pc(0) for mÞ0, f c(m), f c(0) @Fig. 5~b!#. Even when the
interface is evolving between two stoppers, only a small fr
tion of its overall length actually is in between; the rest
still aligned with a stopper. The nonaligned fraction is e
pected to vanish in the thermodynamic limit. These expe
tions are confirmed by numerical studies of the EBM. As c
be seen from the figures, the bonds in front of the interf
are all mostly larger than a threshold value.

Consider an interface of slopem aligned along a critical
DRP path of the same slope. It then moves forward by pu
turing the path at the site with the least value off , which for
an infinite system is exactly 12pc(m). On piercing through,
a portion of the interface grows and fills out a loop of t
infinite cluster while the rest of it remains pinned. Howev
the interface motion within the loop is far from uniform. Ju
as the critical cluster atpc(m) impedes the growth of the
interface on length scales of the order of the size of
system, near-critical clusters impede its motion at len
scales of the order of but smaller than the loop size. One
think of these clusters as forming a finer network of conn
tions within the network formed by the critical cluster
pc(m). While the interface is filling out a loop of the critica
cluster, it encounters this finer mesh and as a result its
tion is impeded temporarily. In what follows, we refer
these near-critical connections as ‘‘sub-stoppers.’’ A s
stopper can be characterized by the lowest value off k on it,
say f ss, and also by the typical length scalel over which it
provides for effective pinning of the interface. These are
lated throughu f ss2 f c(m)u2n i; l .

III. CORRELATIONS IN THE ACTIVE-SITE MOTION

The above description of the evolution of the interfac
contained as it is by networks of substoppers and stopp
makes it clear that there are strong correlations between
cessive points of growth or forward motion. These corre
tions extend from small length scales up to scales of
order of the system size. Figure 6 shows the plot of
location of the active site for 10 000 time steps for both
tilted and untilted cases. It can be seen that there are ju
on all scales in the active site position. The figure corro
rates the description of interface motion given above. Reg
~1! is a typical instance of the interface filling out a loop
sizel . It shows that there are jumps of all sizes up to a len
l , bearing out the substopper picture. Region~2! on the other
hand marks an instance when the interface has aligned a
a stopperpc(m) and hence there are jumps of all sizes up
the system size.

More quantitatively, a measure of this long-ranged mot
of the active site is the probability distributionp( l ) that two
consecutive locations of the active site are a distancel apart.
Figure 7 showsp( l ) for both the tilted and the untilted in
terface. In both cases,p( l ) decays as a power for largel :
p( l );u l u2p.

In the untilted (r51/2) case,p( l ) is a purely symmetric
function because ofr→2r symmetry. We findp52.25
60.05, which compares well with earlier determined valu
of p for the Sneppen model@34–36#.

In the tilted case (rÞ1/2), p( l ) is not a symmetric func-
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tion ~Fig. 7!. As can be seen from the figure, there is a larg
number of small jumps to the right, but more jumps of lar
magnitude to the left. It is convenient to separately anal
the even and odd partsp6[@p( l )6p(2 l )#/2 in order to
find the exponents. We find that the even part,p1( l ), decays
asymptotically asp1( l );u l u2p1 with p152.0060.02. The
odd partp2( l ) changes sign~as implied by the crossing o
the curves in Fig. 7! and asymptotically followsp2( l )
;u l u2p2 with p252.4960.06. We verified that the value
of p1 andp2 are the same for variousrÞ1/2. An interest-
ing aspect of the functionp( l ) for the tilted interface is that
* lp( l )dl vanishes in the thermodynamic limit. In terms
the active-site motion, this implies that though, for the tilt
interface, the short-ranged jumps of the active site are mo
along the tilt, there are enough long-ranged jumps in
opposite direction to balance this. The cancellation gets
ter as the thermodynamic limit is approached. The tilt of t
interface, therefore, does not induce a net drift in the ac
site motion.

Because of the close connection of the interface gro
problem to DP, several exponents associated with the gro
and structure of the interface are thought to be related to
DP exponentsn i andn' by scaling relations@45,35,36#. The
exponentp in the untilted interface as well as the expone

FIG. 6. The location of the active site on the lattice as a funct
of time ~where time is incremented every time the active site
chosen for growth! for ~a! the untilted and~b! the tilted interface.
The region marked~1! is a typical example of a window in time in
which the activity is localized in a region. In~2! the activity ranges
through the whole system, corresponding to an instance when
interface has been pinned by a critical cluster atpc(m). Though the
directionality of the active-site motion is evident in~b!, this does
not induce a net drift as mentioned in the text. The data displa
above are forL51000.
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2954 57SUPRIYA KRISHNAMURTHY AND MUSTANSIR BARMA
p1 in the tilted case have been argued to be related to
DP exponents by the scaling relationp511(11n')/n i
@36#. Besides this, for the tilted case, the exponents can
be obtained exactly@46,47#.

As mentioned earlier, the functionp( l ) does not contain
all the information about the active-site motion. This is d
to the presence of temporal correlations in the interface
pinning model: the jump of the active site at the pres
instant is strongly correlated to the jumps before. As a res
what is needed is the full distribution functio
p( l u l n21••• l 2u l 1), which is the conditional probability dis
tribution that a jump of lengthl occurs att5n given that a
jump of lengthl 1 occurred att51, a jump of lengthl 2 oc-
curred att52 and so on. The probability distributionp( l ) is
obtained by integrating out the other variabl
l 1 ,l 2 , . . . ,l n21. In order to assess the importance of the
temporal correlations, we numerically determined the con
tional jump probability distributionp( l 8u l ), the conditional
probability that a jump of lengthl 8 occurs given that at the
previous instant, the active-spot jumped a distancel . Figure
8~a! presents our numerical measurement of this function
the EBM. After the initial short-ranged decay, which is
result of the local backwetting move of the dynamics, t
function is flat over a considerable range, and then decay
a power law. As evident in the figure, the range of the
region depends onl but the value of the probability in the fla
region becomes independent ofl for large l . In Fig. 8~b! we
show the scaling plot ofp( l 8u l ) obtained by plotting the

FIG. 7. Monte Carlo results for the probability distribution
the jump of the active site for three different densities,r50.5 ~plus
sign!, r50.75 ~circles!, and r50.843 75 ~triangles!. If r
Þ0.5, p( l ) is not a symmetric function andp( l ) andp(2 l ) ~both
of which are shown in the figure in the tworÞ0.5 cases! do not
coincide as they do for the symmetric case. Whilep( l ).p(2 l ) for
small l , the curves cross so that the situation is reversed for la
jumps. The two curves asymptotically coincide with an asympto
slope that differs from that forr50.5. We usedL565 536 and
averaged over 33109 configurations.
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curves as a function ofl 8/ l . The function evidently ap-
proaches a scaling form for largel and l 8. The scaling func-
tion is flat over a region and decays beyond as a po
;( l 8/ l )2p8. We expectp85p(.2.25) to hold asl 8/ l→`.
Although the measured value ofp8 in the range shown is
larger (.2.9), the bending apparent in the lower right po
tion of the curve is consistent with an approach to the va
p.

Qualitatively, the behavior of this function may be unde
stood thus. If the active site jumps a distancel at the previ-
ous instant, one can think of the interface as pinned by a
cluster with loops of average linear dimension; l . Most of
the interface would then be pinned while a portion of it fi
out a loop of linear dimension; l . This would imply that on
average, any jump smaller thanl is equally likely. On length
scales larger thanl the motion is like the original problem
and hence the jump probability decays as a power law. T
line of argument would imply thatp( l 8u l ) should be a scal-
ing function of l 8/ l . Figure 8~b! bears out this expectation.

Another equivalent way of understanding the functi
p( l 8u l ) is using the ‘‘backward-avalanche’’ technique intr
duced in@48#. A backward avalanche is defined as follows.
at times1S a random numberf k is picked as the minimum
the magnitude of the backward avalanche isS if at time s the
random number picked was larger thanf k but for time s

e
c

FIG. 8. ~a! The functionp( l 8u l ) as a function ofl 8. l is loga-
rithmically binned in powers of 2 and is maximum for the cur
with the largest flat stretch. As can be seen in the figure, the
stretches of the large-l curves coincide, peeling off at a value that
l dependent.~b! The functionp( l 8u l ) plotted as a function ofl 8/ l .
The curves coincide for largel indicating that the conditional prob
ability is just a function of the ratiol 8/ l .
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57 2955PATTERN FORMATION IN INTERFACE DEPINNING . . .
1r for r ,S the value of the random number picked w
smaller. That is, one goes back in time to the first inst
when the random number picked is larger than the pre
one and this interval of time is the magnitude of t
backward-avalanche initiated at the present instant. If
active site hopped a distancel in the previous instant, this
would imply that the size of the spatial region affected by
backward avalanche initiated at the previous instant is; l .
At the next time step any of three possibilities can occur
the random number picked issmaller than the previous one
then the active site necessarily lies in the local region, wh
has just been affected by the move. If the random num
picked is larger, then either the random number picked
longs to the same backward avalanche as the previous
or it belongs to a bigger one~which therefore encompasse
the previous one!. In the former case, the active site
equally likely to hop anywhere in the region affected by t
present backward avalanche@36,48# and hence the function
is flat up to a length; l . In the latter case, active-site hop
are in general larger, since the encompassing backward
lanche is larger. The probability of having the active site h
a distancel 1. l is then related to the probability of finding
backward avalanche of this spatial extent, and hence de
as a power law.

Another indication of the correlation in the jumps of th
active site is the following quantity, which is the analog
an avalanche, for jumps~Fig. 9!. Let the avalanche be initi
ated at an instants by a jump of magnitudel of the active
spot. The ‘‘jump avalanche’’ lasts as long as consecut
jumps in the active site are less thanl . That is, the avalanche
is of durationS if at time s the active site hopped a lengthl ,
and for S consecutive instants after that, the hops in
active site are smaller thanl until at the (S11)th instant, it
hopped a distance greater thanl . The analog of this quantity
for random numbers was first defined for models in the n
wetting invasion percolation regime@31,32# and later also
measured for the Sneppen model@45,35,36#. The jump ava-
lanche is a strong indication of the correlation in success

FIG. 9. The distributionF(su l ) of durations of avalanches fo
jumps as defined in the text. For smalll , F(su l ) decays exponen
tially ~filled triangles! as expected, since it is very unlikely that
larger jump does not immediately occur. Asl increases, the cutof
for the decay increases~empty and filled circles! until for large
enoughl , the curves coincide, decaying as a power.s21.
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jumps of the active site. As Fig. 9 indicates, the function fa
off as a slow power law. This is an indication of the lon
term memory in the system, as the function would dec
exponentially if successive jumps had not been correlate

IV. PATTERN FORMATION IN THE INTERFACE
DEPINNING MODEL

A. Definition

As discussed in the previous section, the motion of
active spot in this model is very correlated. One can then
whether this motion reorganizes the shape of the interface~or
equivalently the arrangements of particles and holes in
particle model corresponding to the EBM! in any specific
way. Below we will show that the correlated motion of th
growth spot in this model leads to the formation of a patte
in height gradients~or equivalently the density of particles!
of the interface.

The defining Eq.~1! for height gradients can be written i
terms of densities as

C~r !5^n„r 1R~ t !…&2r. ~2!

Here n(r ) is the density at siter and the angular bracket
denote a time average in the steady state.

This pattern is linked to the formation of a structure that
very different from normal space-fixed patterns becaus
refers to an originR(t), which is moving around. In fact it
can be discernedonly when the origin moves. An ordinary
space fixed average is translationally invariant and satis
^n(r )&5r for any siter . Since the pattern is centered arou
the site of activity, we will refer to it as the ‘‘activity-
centered pattern’’~ACP!.

B. Numerical results

We studied C(r ) by Monte Carlo simulation in the
particle-hole representation. We studied systems of sizL
ranging from 210 to 216. The system was allowed to evolv
through 1062107 configurations before measurements we
made. In order to speed up the algorithm to locate the
with the minimumf , we used a logarithmic-bin search pro
cedure. Steady state averages were computed using;108

configurations. While this number of configurations was a
eraged over to get an accurate estimate of the decay e
nent, even an average over about 100 configurations i
cates the presence of a strong density inhomogeneity cle

In the untilted case, the height profile is an even funct
@Fig. 1~a!# andC(r ) is an odd function@Fig. 10~a!# decaying
asymptotically as a power lawur u2u with u50.9060.03
~Fig. 10, inset!. In the tilted case as there is nor→2r sym-
metry,C(r ) does not have a definite parity@Fig. 10~b!#. It is
useful to separately analyze the even and odd functi
C6(r )[@C(r )6C(2r )#/2. The odd part decays a
C2(r );ur u2u2 with u251.0460.05 ~Fig. 10, inset!. The
even partC1(r )'2b(L)1aur u2u1 whereu150.4660.05
andb(L)→0 as the lattice sizeL→` ~Fig. 11!.

The density profiles of Fig. 10 correspond to the heig
patterns shown in Figs. 1 and 2. Qualitatively, the reason
this time-averaged structure of the height profile can be s
as follows. In the untilted case, on average, the active sit
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2956 57SUPRIYA KRISHNAMURTHY AND MUSTANSIR BARMA
located at the peak@Fig. 1~a!# where f k’s that have not been
sampled earlier are most likely to occur; such a region is t
more likely to contain small values off . In the tilted case
there is, in addition, a bootstrap effect at work. Ifr>0.5, the
active site is more likely to contain a particle. Given t
dynamics, regions to the left are more often refreshed, m
ing the active site likely to move in this direction and fin
itself amidst a particle cluster. The directionality of the a
tive site motion is evident in Fig. 6. This leads to densit
higher thanr on both sides of the active site@Fig. 10~b!# for
r sufficiently different from 0.5. That particles are picke
more often than would be expected on the basis of the no
nal density is evident from the fact that the value of t
density at the active spot is larger thanr. For the density
pattern in Fig. 10~b!, which corresponds tor50.75, the
value of the density at the origin isC(0)50.84.

In the next section we develop an approximate theoret
description for the exponents describing the decay of
pattern in terms of the exponentp, which describes the long
ranged hops of the active site.

V. THE INTEGRAL EQUATION
FOR PATTERN FORMATION

As discussed in the previous section, a pattern in he
gradients or densities is formed in the interface depinn

FIG. 10. Density profiles in the~a! untilted (r50.5) and~b!
tilted (r50.75) cases. Note that in~b!, the value at the origin is
larger than 0.75, indicating that the active site is more than no
nally likely to have a particle, because of the bootstrap effect
cussed in the text. While~a! is an odd function ofr , ~b! has no
parity and the even and odd parts can be studied separately.
inset shows the odd part of the profile in the untilted~filled circles!
and tilted ~open circles! cases. Both decay as power laws thou
with differing exponents. We usedL516 384 and averaged ove
108 configurations.
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model. It is related to the motion of the active site, whi
rearranges the particles and holes in its wake. For examp
the active site were to remain stationary at a given site fo
certain length of time, the dynamics is such that it wou
build up a pileup of particles to the left of the site and
pileup of holes to the right, i.e., it would create a dens
shock around itself. In this section, we write down an in
gral equation that provides a description of the pattern
terms of p( l ), the probability that the active site hops
lengthl in consecutive instants, as well as the local dynam
of interface readjustment.

If the pattern is centered atR(t) at time t, the dynamics
causes two changes at the next instant:~i! A short-ranged
readjustment of the interface changes the profile nearR(t).
The average density change at siteR(t)1r is modeled
through a density-increment functionF(r ), which is short
ranged. ~ii ! The active site jumps a distancel[R(t11)
2R(t). Since the pattern is centered at the active site,
result of~i! followed by ~ii ! is that the average profile repro
duces itself, except that it is centered at the shifted
R(t)1 l . Both effects are incorporated into the integral equ
tion

C~r !5E
2`

1`

@C~r 2 l !1F~r 2 l !#p~ l !dl. ~3!

This equation can be solved using Fourier transforms.
particular, the long-distance behavior of the patternC(r ) is
related to the decay ofp( l ) for large l , resulting in a scaling
relation for the exponentu in terms of the exponentp. The
details of the analysis are given in Sec. V B below.

However, this equation provides only an approximate
scription. To understand the nature of the approximat
made, we define a ‘‘Le´vy-flight model,’’ which is similar in
spirit to the models of@20,34#. As in these models, there i
no explicit quenched disorder, but the effect of disorder
modeled by a long-ranged jump probability distribution. F
this model, we show that the integral equation~3! holds ex-
actly. Further, we can gain considerable insight into

FIG. 11. A log-log plot of the Fourier transform of the even pa
of the density profile in the tilted (r50.75) case, for the data ap
pearing in Fig. 10. At lowq the function decays as a power.q2f

with f.0.54 implying that at larger , the behavior is a power law
with decayr 2(12f).
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57 2957PATTERN FORMATION IN INTERFACE DEPINNING . . .
mechanism of activity-centered pattern formation by stu
ing the effect of different decays of the jump functionp( l )
within the Lévy-flight model.

A. Derivation of the integral equation
for the Lévy-flight model

The Lévy-flight model is defined as follows. Consider
one-dimensional lattice with particles and holes. We assu
that a jump probability distributionp( l ) is specifieda priori:
if at t50 the active site is located at a siter , at the next
instant, it can lie a distancel away ~i.e., at l 1r ) with a
probabilityp( l ). Evidently there are no temporal correlatio
in this model, since at every instant, the jump length is c
sen afresh from the distributionp( l ). Spatial correlations in
the active-site motion are, however, built in by hand sin
p( l ) is given. Once a particle or hole is picked for upda
the local rules are assumed to be the same as in the extr
bond model, i.e., the particle~or hole! exchanges position
with the nearest hole~or particle! to the left ~or right!.

We now derive an integral equation starting from t
master equation for the Le´vy-flight model. We first define a
configuration i to be a set of integers„$ni(r )%,Ri… r
51, . . . ,N whereN is the size of the lattice andR is the
current position of the active site. The variablesn(r ) can
take the values 0 or 1 depending on whether the siter is
occupied by a particle or is empty andR can take any value
between 1 andN. The total number of states is, therefor
NT5N3NCNp

whereNp is the number of particles. In th
usual manner, we characterize the steady state by a co
vector uP&. The entries of this column vector are the pro
abilities Pi for the configurationi where i 51, . . . ,NT . To
obtain the steady state, we need to solve the master equ
duP&/dt5WuP& whereW is an NT3NT matrix connecting
the different states. The dynamics that connects differ
states is the following: The particle~hole! at R is exchanged
with the nearest hole~particle! to the left~right! as specified
earlier. Subsequently the active site now hops fromR to R
1 l with a probability p( l ). The diagonal elements of th
matrix areWii 521. The off-diagonal elements are given b
Wi j 5p( l ) if configuration i is connected to configurationj
by an elementary update and a jump of the active site
lengthl and byWi j 50 otherwise. Since the probabilityp( l )
is normalized@(p( l )51# the sum( iWi j for each column of
the matrix adds up to 0. This is a requirement for any s
chastic matrix.

Every configurationi can go toN other configurations.
Each of these differ fromi in the positions of the particle an
hole exchanged in the elementary update move, and als
the position of the active site. Similarly there areN configu-
rations that feed into any configurationi . The construction of
these configurations is very similar to that carried out in
case of the low-noise Toom interface and related mod
@49#. However, unlike in that case, here the transition pro
abilities are not all the same. As a result the steady state
is very different from the product-measure steady state fo
in @49# and is difficult to characterize for generalp( l ).

However, we are able to characterize one aspect of
steady state by defining a quantityC in the following man-
ner:
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C~r !5(
i 51

NT

Pini~r 1Ri !2r. ~4!

That is, we add up the densities at a siter for each configu-
ration that occurs in the steady state, having first shifted
origin separately in each configuration so that the siter for
every state is one that liesr away from the active site. From
this is subtracted the average densityr. The above equation
is equivalent to Eq.~2!, with the time average in the latte
being replaced by a weighted sum over configurations h

From examination of theW matrix, it is clear that in the
case thatp( l ) is a constant independent ofl ~as in ordinary
stochastic processes!, all thePi ’s are equal. As a result, from
the definition, the ACP vanishes. However, while this is
sufficient condition it is not necessary. There are instan
~see Sec. VIII! when special symmetry considerations ru
out any pattern formation. However, the presence of an A
definitely implies the presence of a nontrivialp( l ); a pattern
indicates correlations in the active-site motion.

We will now derive Eq.~3! for the Lévy-flight model.
Note that the probabilityPi5( l p( l )( j→ i8 Pj where the prime
on the summation implies that only those configurationj
are considered in which the active site isl sites away from its
position ini . Furtherj should transform toi when the active
site is updated. This equation follows from the master eq
tion. The sum is over alll ’s.

We can now substitute this in the right-hand side of E
~4!:

C~r !5(
l

pl(
i

ni~r 1Ri !(
j→ i

8Pj2r. ~5!

The density at siter in the configurationi is multiplied by
the sum of the probabilities of those configurations that le
to it after a local update: a local exchange of a particle a
hole, and a subsequent jump of the active site of lengtl .
Hence we can write

ni~r 1Ri !5nj~r 1Ri2 l !1f j~r 1Ri2 l !. ~6!

Here f(r ) is a short-ranged function@this is related to the
‘‘density-increment’’ function appearing in Eq.~3!#, which
depends on the local update rules. It is defined by Eq.~6! and
is the difference between the two configurationsi and j ,
which are related by an update. This function is the same
this model as for the bond model~Fig. 12! since it depends
only on the local update rules. In the EBM, it is a sho
ranged function whose range is determined by the aver
length of particle and hole hops. Later in this section we w
comment on circumstances in which this function can
come long ranged.

Substituting Eq.~6! in Eq. ~5!, we find that the right hand
side can be rewritten as

C~r !5(
l

p~ l !(
i

@ni~r 2 l !1f i~r 2 l !2r#Pi . ~7!

Using the definition ofC(r ) again, we finally obtain the
integral equation~3! for C(r ) in terms ofp( l ),
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C~r !5(
l

p~ l !@C~r 2 l !1F~r 2 l !#. ~8!

Here we have defined an averaged functionF(r )
5( i Pif i(r ). From particle conservation, it follows tha
*F(r )dr50. For the symmetric case of half filling,N/2
particles andN/2 holes, the functionF is strictly an odd
function. However, this does not hold when the number
particles is not equal to the number of holes@Fig. 12~b!#.

Thus we have been able to show that the integral equa
~2! is valid for the Lévy-flight model. From the nature of th
model, it is clear that while spatial correlations in the act
site motion are built in by hand, there are no temporal c
relations in the length of subsequent hops of the active s
Therefore the integral equation is exact only in such a ca
In the next section, however, we carry over some of
predictions of the integral equation to the EBM and find th
in some cases, it tallies quite well with numerical results.
Sec. VI, we discuss briefly how to generalize Eq.~8! to in-
clude temporal correlations such as are present in the E

B. Analysis of the integral equation

We now investigate the predictions of Eq.~3! for C(r ) in
terms of a given active site hopping probabilityp( l ) and the

FIG. 12. The density-increment functionF(r ) in the EBM for
~a! untilted and~b! tilted cases. Due to particle-hole symmetry, t
function is a short-ranged purely odd function in~a! while it has no
specific parity in~b!. In both cases, however,*F(r )dr50 from
particle-hole conservation. We usedL516 384 and averaged ove
163108 configurations.
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short-ranged readjustment functionf(r ). We solve the equa-

tion using Fourier transforms. Defining Ĉ(q)
[*2`

1`e2p iqrC(r )dr, etc. we find

Ĉ~q!5
F̂~q! p̂~q!

12 p̂~q!
. ~9!

Since we are mainly interested in theq→0 behavior of Eq.

~9!, we do not need the full functional form ofF̂(q) but only
the leading order behavior.

Given a functionp( l ) the integral equation predicts a co
respondingC(r ). The large-distance behavior of the AC
thus depends on whetherp( l ) is short or long ranged. We
consider now three different cases for the functionp( l ) and

solve forĈ(q) using Eq.~9!. We substantiate the prediction
of the equation by numerically simulating the Le´vy-flight
model.

Case 1: Consider first the case of an infinite-rangedp( l ).
The simplest case is whenp( l )51/N, whereN is the number
of sites in the lattice. This case corresponds to usual stoc
tic processes. In this casep̂(q50)51 andp̂(qÞ0)50. This

implies thatĈ(q)50 for qÞ0 and is therefore a very shor
ranged function in space.

Case 2: Consider now the case whenp( l ) is a short-
ranged function. We will consider the case when it is sy
metric and hence for lowqp̂(q);q2. Substituting this in Eq.

~9! we find thatĈ(q);sgn(q)/uqu. This implies thatC(r )
;sgn(r ). The particles and holes separate out complet
and the active site is located at the boundary between
two. This is easy to understand if we consider the limiti
case when the active site is totally stationary. In this case,
action of the dynamics is to move all the particles from t
right of the active site to its left. Eventually, this leads to
total separation of particles and holes. This picture is mo
fied only slightly when the active site executes a localiz
motion about any lattice site, and hence for a short-ran
p( l ) ~Fig. 13!.

FIG. 13. The activity-centered patternC(r ) in the Lévy flight
model for whichp( l ) decays rapidly asl 26.0. As evident in the
figure, there is a near complete segregation of particles and h
about the active site. A system of size 1024 was considered
;105 configurations were averaged over.
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57 2959PATTERN FORMATION IN INTERFACE DEPINNING . . .
Case 3: We now come to the case of interest for t
interface depinning model, i.e., whenp( l ) decays as a slow
power law. If p1( l )51/u l up1, Eq. ~9! predicts thatC(r )
;sgn(r )ur uu2. The exponentsp and u2 are related by the
scaling relationu21p153. This is to be compared with th
numerical estimateu21p153.15 for the extremal bond
model in the untilted case. Consider now the case when n
of the functionsp( l ),C(r ), andF(r ) has a definite parity.
This is relevant for the tilted interface in the Sneppen mod

Since F(r ) is short ranged,F̂(q)' if1q1f2q2 as q→0.
There is nof0 term, as the elementary step of hopping
particle or hole conserves particle number, implyi
*F(r )dr50. Theq→0 behavior ofp̂(q) is determined by
the asymptotic power-law decays of the even and odd p
p6( l ) as u l u→`. Thus we havep̂1(q)'12Auqup121. We
might have expectedp̂2(q)'Bq1Csgn(q)uqup221, but in
fact the mean velocity* lP( l )dl of the active site vanishe
~as mentioned in Sec. III! implying B50. Thus the integral
equation predicts that to leading order bothC1(r ) and
C2(r ) decay as powers; ur u2u6, with

u112p12p253

and

u21p153.

The predictionp11u253 compares quite well with the
numerically determined values 3.04 forC2(r ) in the tilted
case. ForC1(r ), however, the numerically determined valu
of u112p12p2(.1.97) deviates substantially from th
predicted value 3. The likely reason behind the discrepa
is explained in the next section.

C. Drawbacks of the approximation

The integral equation~2! is exact for the Le´vy-flight
model, but only approximate for the EBM of interface d
pinning. Here we briefly run over the nature of the appro
mations made, and possible directions for improvement.

One sort of approximation is the neglect of correlatio
between lengths of successive jumps; as we saw in Sec
these correlations are very marked. The extension of the
tegral equation to include such correlations is discusse
Sec. VI B.

As noted in Case 3 of Sec. V B for tilted interfacesr
Þ0.5), the pattern is not well represented by Eq.~2! even
qualitatively. The reason for this is that therÞ0.5 pattern in
the EBM is formed due to a feedback effect, which is mi
ing in the Lévy-flight model. If r.0.5, then within EBM
dynamics, particles~or holes ifr,0.5) are picked more of-
ten than justrNtry times in Ntry tries. This condition is not
incorporated in Eq.~3! at all. To test how important this
effect is, we simulated the Le´vy-flight model with the further
constraint that if a site chosen for growth does not conta
particle, it is discarded and the search is continued until a
containing a particle is found. This leads to a pattern t
more closely resembles that in therÞ0.5 EBM, in that the
even part of the pattern is much more prominent than the
part ~see Fig. 14!.
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Another point to note is that we have always taken
density-increment functionF to be short ranged. Insofar a
we are interested in the EBM, this is certainly so. Howev
in the Lévy-flight model, any power larger than 3 results in
pattern like the one shown in Fig. 13, with a segregation
particles and holes and not one decaying as a power as
dicted by the integral equation. The reason for this is tha
this case, the mean squared distance^R2(t)& covered by the
active site in timet is finite. Hence for a large system, this
like a short-ranged motion and leads to particle hole seg
gation. In the process, as particle clusters build up,
density-increment function is no longer short ranged.

Lastly, while in the EBM, the probability distribution o
jumpsp( l ) arises naturally from the dynamics, in the Le´vy-
flight model we put in the spatial correlation in the active s
motion by hand. In the following section, we try to remed
this point by modifying the integral equation by writing a s
of coupled equations.

D. The coupled equations

A drawback of the Le´vy-flight model is that the function
p( l ) has to be supplied from the outside. We try to rect
this by writing a set of coupled equations that predictC(r )
andp( l ) in terms of each other.

In order to do this, we need to understand the probabi
that a certain portion of the pattern is visited by the act
site. In the EBM, the site visited last has the largest proba
ity of being visited again since it is most likely to have th
least random number. The more often a region is visited,
more the random numbers associated with sites in that re
are refreshed and hence the more likely it is that the m
mum random number lies in that region. Since the dynam
creates a particle excess on the left of the active site an
corresponding paucity on its right, a density shock is built
in that region. The extent of the shock is directly propo
tional to the length of time spent by the active spot in th
region. The larger the shock, the larger the density diff
ence, and hence the larger the derivative ofC. Hence the
effect of a region being visited a large number of times

FIG. 14. The activity-centered patternC(r ) for a Lévy flight
model with the further constraint that only sites containing partic
are chosen. The pattern generated with these rules resemblesC1(r )
in the EBM more closely than if the rules were implemented wi
out the constraint. This fits in with our conjecture as to why t
integral equation does not describe the even part of the pattern
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precisely thatdC/dr is large. But as explained above, th
larger the number of times a site is visited, the larger is
probability of its being visited again. Thus we conjecture th
the probability of visiting a region a distancel away from the
active site is proportional to the magnitude ofdC/dr in that
region, and write the following equations:

C~r !5E dlp~ l !@C~r 2 l !1F~r 2 l !# ~10!

and

p~ l !5N21UdC

dr U
r 5 l

, ~11!

whereN5* udC/dru is the appropriate normalizing factor.
Equation~10! is the integral equation that we derived

the last section. Equation~11! now definesp( l ) in terms of
the patternC. The details of the dynamics of particle-ho
exchange in this model make this a reasonable premis
explained above.

Let us compare the results of the coupled equations w
those for the untilted interface. IfC(r );ur u2u and p( l )
;u l u2p, we saw in Sec. V B that Eq.~10! implies relation
p1u53. Further, Eq.~11! predicts the relationu115p.
The solution isp52 and u51. This compares quite wel
with the value of the exponentsp52.2560.05 andu50.9
60.03 found numerically for the EBM.

VI. TEMPORAL CORRELATIONS IN THE INTERFACE
DEPINNING MODEL

A. Time dependence of the pattern

The pattern, as defined earlier, is obtained by a stra
time average over all configurations, taking care to shift
origin appropriately at every instant. It is interesting to a
how the pattern changes if we consider only those confi
rations that occur after very large jumps of the active site~or
equivalently, only those configurations for which the min
mum random number is very close to the largest possible!. A
strong dependence of the pattern on the configurations a
aged over is evident in Fig. 15. The pattern gets m
squashed as the jumps in the active site leading to the
figuration get larger. This implies that the pattern cease
exist at stoppers and builds up again as the interface pie
through. The actual dynamics of pattern collapse and buil
is an interesting subject for further study.

It should be recalled that long jumps occur much mo
infrequently than short jumps~Fig. 7!; the probability of oc-
currence of a stopper is thus very low. The time average
the definition of the pattern@Eq. ~1!# is dominated by con-
figurations between stoppers~when the active site is moving
within the loops of the directed percolation network!, rather
than those at stoppers~when the active site is on the bac
bone of the network!.

B. A Hierarchy of integral equations

The integral equation~3! can be modified to include cor
relations in time. To do this, we enlarge the definition o
configurationi to include the active site at the previous i
e
t

as

th

ht
e
k
u-

er-
e
n-
to
es
p

e

in

stant as well. Now the off-diagonal elements of the transit
matrix elementsWi j 5p( l 8u l ) if configuration j has resulted
as a consequence of a jump of the active site of lengthl and
is connected to configurationi by an elementary update an
a jump of the active site of lengthl 8. The functionp( l 8u l ) is
just the conditional jump probability already introduced
Sec. III.

Following the same procedure as before, we get an eq
tion for C l 8 (r ), the pattern resulting from an active site ho
of length l :

C l 8~r !5(
l

p~ l 8u l !@C l~r 2 l 8!1F l~r 2 l 8!#. ~12!

Keeping correlations up to one time step back gives the
tern a nontrivial dependence on the jump lengthl 8. The in-
tegral equation~3! gives only a trivial dependence ofC(r )
on l 8.

This procedure can be further generalized by going b
one more step in time and keeping the location of the ac
site two instants back.

This leads to an equation of the following sort:

C l ,l 1
~r !5(

l 2
p~ l u l 1u l 2!@C l 1 ,l 2

~r 2 l !1F l 1 ,l 2
~r 2 l !#,

wherep( l u l 1u l 2) is the conditional probability that the activ
site hops a lengthl given that at the previous instant
hopped a distancel 1 and in the instant before that, a leng
l 2. Similarly, C l 1 ,l 2

(r ) is the pattern formed when average
over configurations that result after two consecutive jumps
l 1 and l 2, respectively.

Here ( l 1
C l ,l 1

(r )5C l(r ). Keeping the time sequence o
jumps leads to an infinite hierarchy of equations:

C~r !5(
l

(
l 8

p~ l 8u l !@C l~r 2 l 8!1F l~r 2 l 8!#, ~13!

FIG. 15. Evidence for the dependence of the ACP on the len
of the previous jump of the active site.C(r ) is shown with time-
averaging done over~1! all configurations~open circles!, ~2! only
configurations resulting after a jump in the active site of magnitu
50 ~filled triangles!, ~3! only configurations resulting after a jump o
length 100~open triangles! and ~4! only configurations resulting
after a jump of length 300~filled circles!. As is evident, the pattern
gets more and more squashed until it barely exists in~4!. A system
of size 1024 was used and;106 configurations were averaged ove



-

e
on
tio

-

f

CP
t be
ac-
rre-

on-

nd

tion
in
-
of
re-

as
atu-
ce-

at

a-
el
are
is

e
adi-
he
at

the

oi
th
er

57 2961PATTERN FORMATION IN INTERFACE DEPINNING . . .
C l~r !5 (
l 1 ,l 2

p~ l u l 1u l 2!@C l 1 ,l 2
~r 2 l !1F l 1 ,l 2

~r 2 l !#,

~14!

C l 1 ,l 2
5•••. ~15!

The integral equation~3! corresponds to curtailing this hier
archy at the first step by assuming thatC l(r 2 l 8);C(r
2 l 8) andp( l 8u l )5p( l 8).

VII. TWO-POINT CORRELATION FUNCTIONS
IN THE INTERFACE DEPINNING MODEL

The activity-centered patternC(r ) defined in Eq.~1! is a
one-point correlation function, defined with respect to an
ratically moving origin. As a result, it has a strong effect
the customary, space-time averaged two-point correla
function

C~Dr ![$^n~r 8!n~r 81Dr !&%2r2.

Herer 8 is a fixed site on the lattice,^•••& stands for a time
average, and$•••% stands for an average over all sitesr 8.

Numerical results forC(Dr ) for a tilted interface show
that it saturates at a valueCsat, which decreases with increas
ing size L ~Fig. 16!. @At much larger values ofr , propor-
tional to the system sizeL, C(r ) changes sign, as a result o

FIG. 16. Two-point density-density correlation function forL
54096 ~open circles! and forL516 384~squares!. The saturation
value is reduced strongly~filled circles! on subtracting the contri-
bution of the ACP. This lends support to the idea that the one-p
correlation function defined by the ACP enters the definition of
connected part of the two-point correlation function. The data w
obtained by averaging over 106 configurations.
r-

n

the particle conservation sum rule*C(r )dr50]. This hap-
pens because subtracting out the quantityr2 from the corre-
lation function is not correct, since the presence of the A
causes a density inhomogeneity in the medium that canno
accounted for by subtracting out a constant quantity. To
count for the presence of the pattern we consider the co
lation function

G~r ,Dr !5^dn„r 1R~ t !…dn„r 1Dr 1R~ t !…&, ~16!

whereR(t) is the location of the active site,r is the distance
from the active site, anddn„r 1R(t)…[n„r 1R(t)…2r
2C(r ) is the fluctuation around the average ACP. A reas
able expectation is that thedn’s are independent for large
separationsDr , i.e.,

G~r ,Dr !5^dn„r 1R~ t !…&^dn„r 1R~ t !1Dr …&→0 ~17!

as Dr→`. Now consider averaging the functionG(r ,Dr )
over r . On performing a space average over the right-ha
side of Eq.~16!, we note that

$^dn„r 1R~ t !…dn„r 1Dr 1R~ t !…&%5$^dn~r !dn~r 1Dr !&%.
~18!

Thus this implies that$^n(r )n(r 1Dr )&%2$„r1C(r )…„r
1C(r 1Dr )…% approaches zero asDr→`. This predicts the
saturation value of the correlation function

Csat5$„r1C~r !…„r1C~r 1Dr !…%2r2. ~19!

To test this, we subtracted this estimate of the satura
value fromC(Dr ) and found that the saturation effect is
fact suppressed strongly~Fig. 16!, supporting our interpreta
tion. It is possible that another slightly different definition
the pattern would eliminate the slight shoulder, which
mains in Fig. 16, after subtraction ofCsat.

Usually, if the two-point correlation function saturates
the separation between the two points is increased, the s
ration value is associated with a nonzero value of the spa
fixed averagê n(r 8)&2r. The unusual aspect here is th
there is saturation even though^n(r 8)&5r.

We studied the manner in whichC(Dr )2Csat approaches
zero asDr→`. In the tilted case, we found that the correl
tion function decays exponentially by studying a mod
where the rules are the same except that only particles
picked. This corresponds to a case of extreme tilt and
similar to the case studied by@46#. In the untilted case,
C(Dr )2Csat decays as a power law;r 2k with k.0.6.

VIII. PATTERNS IN OTHER MODELS

In the extremal bond model of interface depinning, w
have described the activity-centered pattern in height gr
ents, which forms as a result of correlated motion of t
active site. However, this is not the only sort of pattern th
is formed. There is pattern formation also in the value of
average random numberf at a site, as a function of the
distance from the active site. In analogy with Eq.~2!, we
define this pattern in random numbers as

C f~r !5^ f „r 1R~ t !…&2$^ f &%. ~20!

nt
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Here f „r 1R(t)… is the random number at a distancer from
the active site and the time average^•••& and space averag
$•••% are performed over configurations in the steady st
as before.

Moreover, patterns are found in other extremal models
well. Figures 17, 18, and 19 show thef patterns in the EBM,
the Bak-Sneppen model of biological evolution@38#, and the
Zaitsev model of low-temperature creep@37#, respectively.
Numerically, it is difficult to directly extract the manner i
which the patterns shown in Figs. 17–19 approach th
asymptotic values, as fits to power-law decays are very s
sitive to the assumed saturation value. We avoided this p
lem by studying the Fourier transforms of the functions,
the saturation value influences only the single Fourier m
at q50. In all three cases, the Fourier transforms show e
dence of power-law behavior asq→0, implying power-law
approaches of thef patterns to their respective saturatio
values in real space. However, we have not developed
analytical description of thef patterns in any of these mod
els.

Pattern formation thus seems to be generic to extre
models. However, there are instances when consideration
symmetry rule out the formation of a pattern. This is exe
plified in the following model, similar in spirit to that con
sidered in@50#. The rules of the dynamics are the same as
the EBM, random numbers are assigned to every site and
minimum is picked, except that there is no net current
particles as there was in the EBM. If the site picked is oc

FIG. 17. The pattern in random numbers for the EBM~the un-
tilted case! in ~a! real space~b! Fourier space. The Fourier trans
formed function appears to diverge as a powerq2f with f.0.49
implying a power-law decay;r 2(12f) at larger for the function in
real space. The above data are for a system of sizeL58192, aver-
aging over 107 configurations.
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pied by a particle, the particle exchanges place with the fi
hole to its left, and if the site is occupied by a hole, the h
also exchanges place with the first particle to its left. At h
filling, there is no net current. This model is the most sy
metric of those considered so far and there is no den
pattern formed. However, as in the Bak-Sneppen and
Zaitsev models, there is a nontrivial pattern in random nu
bers in this model.

We emphasize that the feature of the dynamics tha
responsible for activity-centered pattern formation is the
istence of correlations in the motion of the active site. E
tremal models constitute just one class in which there
such correlations. An example of another such class is m
els of certain types of reaction-diffusion systems, where
activity is quite constrained and correlated. In another phy
cal context, it would seem that coherent structures that fo
in turbulent flows@51# may well be described by activity
centered patterns. In our definition of the pattern, we take
average over all times, keeping track of the moving structu
This is to be contrasted with previously used methods
identify such moving structures, based on the notion of c
ditional sampling, namely, averaging only over those tim
zones in which the activity is at a particular space-time
cation @51#. Our definition takes configurations at all time

FIG. 18. The pattern in random numbers for the Bak-Snep
model for evolution in~a! real space~b! Fourier space. The Fourie
transformed function appears to diverge as a powerq2f with f
.0.24 implying a decay exponent (12f) for the function in real
space. This pattern could signify, for instance, the average fitnes
a species as a function of the distance from the currently muta
one. The above data are for a system of sizeL58192 and 107

configurations have been averaged over.
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into account, but requires a shift of the origin at every
stant.

IX. SUMMARY AND CONCLUDING REMARKS

We have introduced a variant of the Sneppen mode
interface depinning — the extremal bond model — and h
studied the effect of the dynamics of the growth process
the shape of the interface. Our principal result is the obs
vation that there is a nontrivial structure that forms in t
interface, and that moves along with the active site. A sim
time average of the height gradients, measured in a fram
reference that moves with the active site, defines the activ
centered pattern that serves to quantify the structure.
numerical study shows that the pattern has a tail that de
as a power law at large distances.

An understanding of the mechanism underlying activi
centered pattern formation was obtained by writing an in
gral equation that relates the pattern to the probability dis

FIG. 19. The pattern in random numbers for the Zaitsev mo
in ~a! real space~b! Fourier space. The Fourier transformed fun
tion appears to diverge as a powerq2f with f.0.26 implying a
decay (12f) for the function in real space. The data shown are
a system of sizeL52048, with an average over 107 configurations.
ev
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bution of active-site jump lengths. The integral equati
could be derived by writing an extended master equation
the Lévy-flight model, making it clear that the equation
exact only when there are no temporal correlations betw
successive jump lengths. In the extremal bond model, h
ever, such correlations are strong. We have shown th
correct description of the pattern, involving temporal cor
lations, necessitates keeping an infinite hierarchy of eq
tions. Terminating this hierarchy at the very first step resu
in our integral equation. It would be of interest to understa
how much one can better this description by keeping m
steps in the hierarchy.

The activity-centered pattern is a one-point function, a
so enters the definition of two-point correlation function
The physical point is that the density inhomogeneity cau
by the pattern must be taken into account, by subtracting
relevant quantity from the density-density correlation fun
tion. If this is not done, and the square of the nominal den
r is subtracted instead, the correlation function can exhib
rather unusual sort of finite size effect. This is an interest
point since the space-fixed time-averaged density at a si
r, and it is only the density as defined in Eq.~2! with respect
to the moving active site that is different from the nomin
density. Yet the space-fixed two-point function is affected
this ‘‘hidden’’ pattern.

The presence of the pattern clearly points to a nonhom
geneity in the interface: the region around the active s
looks very different on average from the region far aw
from it. For instance, we expect there to be a larger length
interface in a region of fixed sizex around the active site
than in a region opposite it. We monitored mean squa
fluctuations of the height around the instantaneous averag
regions around and opposite the active site, and found a
nounced difference~factor .2, for both tilted and untilted
interfaces withx5256, L54096). This effect is smaller a
stoppers, in keeping with our finding that the pattern itsel
suppressed there. This excess length of interface assoc
with the activity-centered pattern may provide a useful w
to identify the active region in experiment.

Finally, it was pointed out that activity-centered patte
formation may occur in a wide variety of other physical co
texts, ranging from low-temperature creep of dislocations
structures in turbulent flows. We have presented numer
evidence for this sort of pattern formation in a number
other extremal models. But more generally we exp
activity-centered patterns to form whenever there are str
correlations between successive locations of the active s
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