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Pattern formation in interface depinning and other models: Erratically moving spatial structures
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We study erratically moving spatial structures that are found in a driven interface in a random medium at the
depinning threshold. We introduce a bond-disordered variant of the Sneppen model and study the effect of
extremal dynamics on the morphology of the interface. We find evidence for the formation of a structure that
moves along with the growth site. The time average of the structure, which is defined with respect to the active
spot of growth, defines an activity-centered pattern. Extensive Monte Carlo simulations show that the pattern
has a tail that decays slowly, as a power law. To understand this sort of pattern formation, we write down an
approximate integral equation involving the local interface dynamics and long-ranged jumps of the growth
spot. We clarify the nature of the approximation by considering a model for which the integral equation is
exactly derivable from an extended master equation. Improvements to the equation are considered by adding a
second coupled equation that provides a self-consistent description. The pattern, which defines a one-point
correlation function, is shown to have a strong effect on ordinary space-fixed two-point correlation functions.
Finally we present evidence that this sort of pattern formation is not confined to the interface problem, but is
generic to situations in which the activity at successive time steps is correlated, such as, for instance, in several
other extremal models. We present numerical results for activity-centered patterns in the Bak-Sneppen model
of evolution and the Zaitsev model of low-temperature cr¢g8f063-651X98)07903-3

PACS numbg(s): 47.54:+r, 68.10.Gw, 05.40tj, 47.55.Mh

[. INTRODUCTION of the interface; Ref[9] gives an account of some of the
early work and the relationship to other problems involving
Driven interfaces in random media present several feapinning, while[10] is a recent review. Among various pro-
tures of interest, with regard to both the morphology of theposals put forward to explain anomalous roughening are
moving interface as well as the dynamics of the growth protheories based on continuum equations with quenched disor-
cess. Experiments have been performed on several sorts dér [11-16, the inclusion of noise with power-law ampli-
systems, ranging from fluid flow in porous medie-5] to  tude[17,18 or long-ranged correlationl9—-21], power-law
propagation of burning front§6]. These indicate that the distributions of pinning-center strength22], as well as a
disorder in the medium affects the properties of the interfacelass of models with microscopic rules based on directed
in a crucial way. In particular, the large-distance scalingpercolation[5,23,24 and models that relate the large-scale
properties differ considerably from those of interfaces in uni-structure to the wetting properties of the invading flL2é].
form media. In both theoretical and experimental investigaA number of these models base the explanation of anoma-
tions, it is customary to characterize the spatial structure ofous roughening on the phenomenon of critical depinning,
the interface by itsoughnessThe main point of this paperis which is relevant to an interface just at the threshold of mo-
to show that there is sometimes an unusual sort of pattertion. In the opposite limit of large velocity, the interface
formation [7] in the system, which results in the interface encounters the disorder at any site only for a short time,
acquiring atime-averaged shapén such situations, this pat- suggesting that the quenched nature of disorder is not impor-
tern provides an alternative characterization of interface mortant in this limit, and the interface behaves much as in a
phology. nonrandom mediunfi14]. However, this is not true at low
A customary measure of the roughness is provided by theelocities of the interface near the depinning threshold. In
exponenta, defined byW~L“, whereW is the root mean particular, the limit of zero velocity is thought to be a dy-
squared width of the interface ahds the size of the system. namical critical poin{9] where the scaling properties of the
The experiments mentioned above, and others similar toterface are strongly affected by the disorder.
these, report an anomalously large valuexof large com- In a certain class of models, the quenched disorder enters
pared to the predictions of existing theories for interfaceas barriers of random strengths that impede interface motion.
growth in nonrandom medif8]. It is recognized that the The formation of infinitely long directed percolating paths of
guenched nature of the disorder in the medium is responsiblédaese barriers is of special significance, as such paths can
for this difference in scaling properties of the interface. Un-block the entire interface effectivefjs,23—29. The model
like thermal noise, which varies rapidly, a portion of the proposed by Sneppdi24] involves “extremal” dynamics:
interface subject to a guenched-noise environment continuest each time step, the interface advances only along the
to experience the same forces until the growth process takegeakest of the barriers. Extremal models were first intro-
it forward to a new region. The pinning effect of quenchedduced much earlier, in the context of invasion percolation for
noise has a strong effect on the large scale properties of thwo-phase fluid flow in porous media, with a nonwetting
interface. fluid displacing a wetting on§27—-29. The predictions of
Several theoretical models have been put forward to try tdhis invasion percolation model were borne out by experi-
account for the effect of quenched disorder on the propertiesients[30]. Dynamical correlation functions involving the
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| M) (a)

FIG. 1. A schematic picture of the activity-centered pattern in an
untilted (m=0) interface showinda) the height gradient pattern as
defined in Eq.(1), (b) the interface profile obtained by integrating
the pattern in(a). The discontinuity at the origin ifa) leads to a
cusp at the origin ir(b), implying that the active site is most likely
at the peak.

FIG. 2. A schematic picture of the activity-centered pattern in a
tilted interface m+#0), in (8 height gradientgb) the interface
profile obtained by integrating the pattern(a. As can be seen in
(b), there is a larger than nominal slope near the active site.

slowly at large distances, as a power law. The corresponding

center of activity in invasion percolation obey scaling height profile of the interfach(r) with respect to the active
[31,32, and the process defines a self-organized critical phesite is represented in Fig(d). The nature of the pattern is
nomenon[32]; the interface organizes itself to align along sensitive to tilt, and Fig. 2 shows the height-gradient pattern
critical paths bordered by large barriers, without the necesand height profile for a tilted interface.
sity of tuning any external parameters. The model proposed We propose that this pattern is a simple way of character-
by Snepperi24] is a modification of the invasion percolation izing a new aspect of the morphology of the interface. Tra-
model, incorporating surface tension effects that prevengitional ways of characterizing the morphology involve, as
very strong local convolutions of the interface, resulting in anas already been mentioned, determining the roughness ex-
self-affine, rather than self-similar, geometry. An extremalponenta_ However, such a definition does not hone in on the
model close to the Sneppen model was shown to r¢88]t  era| shapeof the interface. In situations such as the one
from a model of wetting-fluid invasion, by considering an considered in this paper when the interface does develop a
interface advancing by merging meniscus arcs between adjdgnrivial structure, the pattern is a useful quantitative char-
cent pairs of pinning centers. o _ . acterization. An important point about the time-averaged pat-

An interesting feature of extremal dynamics is that it in- o js that Eq(1) defines a one-point correlation function.

duces strong spatial co_rrela_ltion in sites at _which growt_h OCas such, it would be expected to strongly influence the prop-
curs[34-34 at successive time steps. In this paper we intro-grties of customary two-point correlation functions. We

duce and study a variant of the Sneppen model and show thakity this by numerically studying two-point correlations.
the interface develops an interesting _tlme-averaged Structusg rther we find that this sort of pattern formation is not
as a result of correlations. The defining equation for th&egiricted only to the Sneppen model, but also occurs in other
structure Is extremal models, such as the Zaitsev model for low-
temperature creef87] and the Bak-Sneppen modd8] of
W(r)=3[(Vh(r +R(t)))—m], (1) piological evolution, albeit in other quantities.

The plan of this paper is as follows. In Sec. Il we intro-
whereR(t) is the position of the active site at tintgh(r’) duce our model and discuss the connection with the problem
denotes the height at the sité, (---) is a time average in of directed percolation, well established from earlier studies.
the steady state, amd is the overall slope of the interface. In Sec. lll, we discuss the correlations in the location of
The unusual point is that this structude(r) is not fixed in  successive growth sites, a concept central to this paper be-
space, but moves with its center always at the growth sitecause of its connection with pattern formation. In Secs. IV
which itself follows an erratic path. The moving origin is and V we define the pattern and present numerical results as
crucial to the definition, as time averages performed at avell as an integral equation, which provides an understand-
fixed point in space reveal no structure at all. This averagéng of this sort of pattern formation. We define a model for
structure defines a pattern, and we study its formation nuwhich the equation is exact and discuss how the approxima-
merically and analytically. tion can be improved. In Sec. VI, we discuss the issue of

Figure Xa) depicts schematically the activity-centered temporal correlations with a view to seeing how they affect
pattern in height gradients with respect to the moving originthe pattern. In Sec. VII, we present our results for an ordi-
for the untilted m=0) interface. As can be seen, the inter- nary two-point correlation function in our model and show
face develops an overall shape that is described by thdhat activity-centered pattern formation has to be taken into
height-gradient profile¥(r). The tail of the pattern falls account in order to understand some features in it. Section
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trated in Fig. 3. This preserves the length of the interface as
would happen in situations with very high surface tension.
The local dynamics of interface adjustment is similar to that
for the low-noise Toom interface if42]; the models are
different in that the growth site is picked by the extremal rule
in our case, while it is picked stochastically in the Toom
interface model.
The EBM differs from the Sneppen model in that the
*e0088002880000 800000000 length of the interface is a strict constant of the motion and
the f|'s are associated with bonds rather than sites. While
this modification does not change the values of any of the
FIG. 3. The extremal bond model. The tilted interfdte ad-  large-distance scaling properties of the Sneppen model, it has
vances along the extremal perimeter bénend locally readjusts to @ few advantages. The interface aligns along directed span-
align along the dashed line. At the next instant, the activity moveding paths in a percolation problem, just as in the Sneppen
from A to A’. The corresponding configuration and local moves forM0del. In our case, the corresponding percolation problem is

the particle-hole model are also showdS is a stopper, whose the diode-resistor percolation problej#3]. On the square
perimeter is fully occupied by diodes. lattice, it is dual to the directed bond percolation problem

[44], which is relatively well studied. Another advantage is
that the problem of interface growth in the EBM is concep-
tually simplified by the existence of a known one-to-one cor-
respondence between the growing interface and a system of
hard-core particles moving on a ring. The two-dimensional
Il. EXTREMAL MODEL OF INTERFACE DEPINNING problem hence reduces to an effectively one-dimensional
one. This also facilitates the numerics. The correspondence

The extremal-model description of fluid-fluid interfaces inb e the interf d the hard ticles is detailed
porous media is valid when the wetting is dominated bybglovsen € interface and the hard-core particies Is detarle

capillary forces, and thermal fluctuations are not important. " . .
In the extremal model, the interface advances along the P_osmve slope links of _the mterfa_ce are represented by
weakest barrier just ahead of it. The appealing feature of thgartlcl_es 0;=1) and negatllve—sllope links b_y holes; €0);
model is that it is self-organized critical; the dynamics,sfae F'g' 3. .The @fference n he|ghtjof the interface between
which involves searches for the global minimum at everySitesjs andjz is given byh;, —h; =2, (2n;—1). In front
step, automatically tunes the interface to a critical state at thef each link of the interface is a bond with a random number
depinning transition, without the necessity of fixing any ex-f assigned to it. Correspondingly, the sjtavith the particle
ternal parameter. In the model proposed by Sneppéhthe  (hole) representing this link carries a random numtfer
random medium is modeled by a square lattice in which theJust as for the interface, at each time step, activity is initiated
sites are assigned random numbées[0,1]. The random at the site with the minimuni;. The update rules for the
numbers could signify, for instance, the pore sizes in a pointerface translate to the following dynamics for particles
rous medium. The interface is a directed path on this latticeind holes. If the site with minimurf; contains a particle
and grows only at that perimeter bond with the smallesthole), it exchanges with the first holgoarticle) to the left
value of the random number; after every such move, a locafright). All sites hopped over, including the two which ex-
rearrangement proceg39] ensures the absence of very large change the particle and hole, are refreshed by assigning a
slopes. new set off;’s. This corresponds to the fact that the updated
Extremal dynamics has also been proposed to descrigortion of the interface moves ahead and meets a fresh set of
very different situations — for instance, the phenomenon of’s on the square lattice. Because the number of positive
low-temperature dislocation cregp7,33, crack propagation sjope links(and hence also the number of negative slope

~—

r

VIII deals with pattern formation in other extremal models
and we conclude with a summary of our results in Sec. IX.

[40], and biological evolution38]. We will see in Sec. VIl Jinks) is conserved for the interface, in the particle-hole ter-
that the sort of pattern formation we find in the interfaceminology, this implies that the number of particles is con-
model occurs in these models as well. served. Hence we can define a dengitfor particles on the
one-dimensional lattice. This density determines the mean
A. The extremal bond model slopem=2p—1 of the interface. An untilted interface cor-

e . . ... responds to half filling. The reference direction for determin-
We study a modified version of the Sneppen model in thIﬁng tilt is the easy direction of directed bond percolation on

paper. In this version, hereafter referred to as the extremqf,} - S o 1 -
. . . e square lattice, which is along the 45° line. Tilt refers to
bond model(EBM), the interface is taken to be a directed any density away from 0.5, which implies a slope different

Eihhn d(;r; ioandlfggi sllalt]t Icvsﬁli?:h 265\3':21 t;geiecﬁ'gg;"ﬁ:) e from 45°. The interface advances in a direction perpendicu-
y ! P lar to the direction of tilt and this translates to a nonzero

is preserved. To every boridon the lattice is preassigned a : :

fixed random numbef, drawn from the interval0,1]. The current of particles on the ring.
interface grows at that bond, in front of the interface, which
carries the smallest random number. The local growth rules
are the following: if the chosen minimal bond has a positive
(negative slope, the sequence of links with negatiiposi- Extremal models of interface depinning make use of a
tive) slope just below(on the lef} also advances, as illus- correspondence to the diode resistor percolat@RP) and

B. Connection to diode-resistor percolation
and directed percolation
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FIG. 4. The boundary of the region reachable from the origin in
diode-resistor percolation. For a nonzero fraction of resistors, the 0.0006 |
opening angle of the region is larger than 90° as shown. The dashed
line is an infinite path in the corresponding directed percolation
problem on the dual lattice.
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(b)

directed percolatiofiDP) problems to predict various prop- 0 o3 o1 )
erties of the interface. In view of this, it is useful to recall f
some facts about the DP and DRP processes.

In the directed percolation problem, bonds on a lattice are
occupied with probabilityp. At some critical valuep, an
infinite directed path of occupied bon@a which every step

FIG. 5. The steady state probabil®(f) of having a bond with
the value of the random number equal ftpin front of the (a)

: ; . . untilted and(b) tilted interface withp=0.75, in the extremal bond
is taken rightward or upwajdirst forms along a definite model. There is a tilt dependent threshold below which the proba-

direction; on oa tyvo-d_lmenS|onE(IZD) square lattice, this is bilty of finding a bond with that value is very low. A system of size
_alqn_g the 45° direction. .qu.>p°’ The network of these . 1000 was averaged over “6onfigurations.
infinite paths forms an infinite connected cluster. For di-
rected bond percolation on a square lattice the valyg.®  increases fromr/2 to 7r; beyond this, the entire plane can be
known to be=0.6446[44]. There are two distinct correlation reached from the source point. The edge of the connected
lengths,§; along the easy direction ar§l transverse to it, region is bordered by diodes pointing rightward and upward,
both of which diverge ap—p.: &§~(P—pPc) ", ~(P  which prevent it from spreading leftward and downward
—pc) ", respectively. The values of these exponents argrig. 4).
known to ber=1.733 andv, =1.097[44]. On the 2D square lattice, DP and DRP are dual to each
Suppose we have a single source point, and we ask whichther [43]. The dual to a DRP configuration is constructed
portion of the plane can be reached from it via occupiedusing the following rules. A diode in the DRP lattice is
directed bonds. Fop> p, this region is contained within a crossed by a diode in the dual lattice, whereas a resistor is
cone with opening angle @=arctan(n) where m is the crossed by an insulatdno connectiohin the dual lattice.
slope of the edge of the cone with respect to the 45° direcThus we recover the directed percolation problem on the
tion; the opening angle depends pnThis relation can be dual lattice. The opening angles of the cones in the two prob-
inverted to find the critical probabilitp.(m) viz., the prob- lems are related by+ ¢' = .
ability at which a connection first appears along the direction In the EBM, the random medium is modeled by consid-
with slopem= 0. Correlation lengths along and perpendicu-ering a square lattice with every bond assigned a random
lar to this direction have exponentg=1 andv, =0.5[44]. numberf, drawn from the interva] 0,1]. For a certain trial
We refer to the direction along 45° as untiltesh€0); any  valuef*, imagine occupying all bonds with<f* by resis-
other slope is referred to as tilted. tors, and the rest with diodes. We thereby generate a DRP
In the diode-resistor percolation problem, every bond isconfiguration withp=1—f*. Whenf* takes on the value
occupied by a “diode”(a one-way connectigrwith a prob-  1—p,, an infinite connected path of diodes is formed. Such
ability p or a “resistor” (a two-way connectionwith a prob-  a path is called a “stopper,” and is significant for the dy-
ability 1—p. On a square lattice, the diodes all point up ornamics of the EBM, as a moving interface with no overall tilt
right. Let us ask which regions of the plane are connected twill align with such stoppers from time to timi@5]. When
a given source point. Ip=0, a source point can reach the the interface aligns along a stopper, all the bonds in front of
entire quadrant of which it is the left corner. fisdecreases it are larger thanf.,=1—p. [Fig. 5a)]. Similarly a tilted
from 1 top., the opening anglé’ of the connected region interface with slopan aligns along the edge of the cone with
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the same slope and all the bonds in front of it are expected to 1000 g g f " \»‘ y
have a value larger thaf.(m)=1—p.(m). Since p.(m) / ' ' ]
>pc(0) form+#0, f.(m)<f.(0)[Fig. 5b)]. Even when the

interface is evolving between two stoppers, only a small frac-
tion of its overall length actually is in between; the rest is 1
still aligned with a stopper. The nonaligned fraction is ex- : TR 1
pected to vanish in the thermodynamic limit. These expecta- i A \ ' g
tions are confirmed by numerical studies of the EBM. As can ’fa ‘ \!K‘; *lt ,'V\‘ t i

be seen from the figures, the bonds in front of the interface ;/;@ p{% \\\Y\
‘ Vi ' ’ . - B )
2 A, 2 (KO

Position of active site
=
ol
ot
[S—
p—

are all mostly larger than a threshold value. '
Consider an interface of slopa aligned along a critical I8
DRP path of the same slope. It then moves forward by punc-
turing the path at the site with the least valuef pfvhich for
an infinite system is exactly-1p.(m). On piercing through,
a portion of the interface grows and fills out a loop of the
infinite cluster while the rest of it remains pinned. However,
the interface motion within the loop is far from uniform. Just
as the critical cluster ap.(m) impedes the growth of the
interface on length scales of the order of the size of the
system, near-critical clusters impede its motion at length
scales of the order of but smaller than the loop size. One can
think of these clusters as forming a finer network of connec-
tions within the network formed by the critical cluster at
p.(m). While the interface is filling out a loop of the critical
cluster, it encounters this finer mesh and as a result its mo-
tion is impeded temporarily. In what follows, we refer to
these near-critical connections as ‘“sub-stoppers.” A sub-

stopper can be characterized by the lowest valug, @ it, . o . . S
of time (where time is incremented every time the active site is

Ss H H H
say > and also by the typical length scalever which it chosen for growthfor (a) the untilted andb) the tilted interface.

gt%\gdtﬁfofgéFT]IEEJ[}\:?H%TP,!FEl(.)f the interface. These are re"l'he region markedl) is a typical example of a window in time in

which the activity is localized in a region. (2) the activity ranges
through the whole system, corresponding to an instance when the
lll. CORRELATIONS IN THE ACTIVE-SITE MOTION interface has been pinned by a critical clustepgm). Though the

The above descrintion of the evolution of the interface directionality of the active-site motion is evident (h), this does
P 'not induce a net drift as mentioned in the text. The data displayed

containgd as it is by networks of substoppgrs and Stopperg, Jve are foi — 1000

makes it clear that there are strong correlations between suc-

cessive points of growth or forward motion. These correlation (Fig. 7). As can be seen from the figure, there is a larger
tions extend from small length scales up to scales of th@umber of small jumps to the right, but more jumps of large
order of the system size. Figure 6 shows the plot of thamagnitude to the left. It is convenient to separately analyze
location of the active site for 10 000 time steps for both thethe even and odd parts.=[p(l)*=p(—1)]/2 in order to
tilted and untilted cases. It can be seen that there are jumpgihd the exponents. We find that the even pprt(l), decays

on all scales in the active site position. The figure corrobo-asymptotically agp . (1)~|l|~ ™+ with 7, =2.00+0.02. The
rates the description of interface motion given above. Regiondd partp_(I) changes sigrias implied by the crossing of
(1) is a typical instance of the interface filling out a loop of the curves in Fig. ¥ and asymptotically followsp_(l)
sizel. It shows that there are jumps of all sizes up to a length~ |||~ 7~ with 7_=2.49+0.06. We verified that the values
|, bearing out the substopper picture. Regi2non the other  of 7, and«_ are the same for varioys# 1/2. An interest-
hand marks an instance when the interface has aligned alongg aspect of the functiop(l) for the tilted interface is that

a stopperp.(m) and hence there are jumps of all sizes up tof|p(l)dl vanishes in the thermodynamic limit. In terms of
the system size. the active-site motion, this implies that though, for the tilted

More quantitatively, a measure of this long-ranged motioninterface, the short-ranged jumps of the active site are mostly
of the active site is the probability distributigr(l) that two  along the tilt, there are enough long-ranged jumps in the
consecutive locations of the active site are a distaragart.  opposite direction to balance this. The cancellation gets bet-
Figure 7 showsp(l) for both the tilted and the untilted in- ter as the thermodynamic limit is approached. The tilt of the
terface. In both caseq(l) decays as a power for larde interface, therefore, does not induce a net drift in the active
p(H~[1|~". site motion.

In the untilted p=1/2) casep(l) is a purely symmetric Because of the close connection of the interface growth
function because of ——r symmetry. We findm=2.25  problem to DP, several exponents associated with the growth
+0.05, which compares well with earlier determined valuesand structure of the interface are thought to be related to the
of & for the Sneppen mod¢B4—-34. DP exponents/; andv, by scaling relation$45,35,36. The

In the tilted cased+ 1/2), p(l) is not a symmetric func- exponentr in the untilted interface as well as the exponent

Position of active site

time

FIG. 6. The location of the active site on the lattice as a function
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FIG. 7. Monte Carlo results for the probability distribution of
the jump of the active site for three different densities,0.5 (plus A
sign, p=0.75 (circles, and p=0.84375 (triangles. If p 10 .
+#0.5, p(l) is not a symmetric function ang(1) andp(—1) (both 0.001 ,
of which are shown in the figure in the two# 0.5 casesdo not I/

coincide as they do for the symmetric case. Whi(€) >p(—1) for _ _ _
smalll, the curves cross so that the situation is reversed for large FIG. 8. () The functionp(l’|l) as a function of". | is loga-
jumps. The two curves asymptotically coincide with an asymptoticfithmically binned in powers of 2 and is maximum for the curve

slope that differs from that fop=0.5. We used.=65536 and With the largest flat stretch. As can be seen in the figure, the flat
averaged over 810° configurations. stretches of the largkeeurves coincide, peeling off at a value that is

| dependent(b) The functionp(l’|l) plotted as a function of /1.
m, in the tilted case have been argued to be related to th&he curves coincide for largeindicating that the conditional prob-
DP exponents by the scaling relation=1+(1+w»,)/v,  ability is just a function of the rati¢'/I.

[36]. Besides this, for the tilted case, the exponents can also ) ] .
be obtained exactl{46,47. curves as a function of’/lI. The function evidently ap-

As mentioned earlier, the functiop(l) does not contain Proaches a scaling form for largeand!’. The scaling func-
all the information about the active-site motion. This is duetion is flat over a region and decays beyond as a power
to the presence of temporal correlations in the interface de=(l ’/I)*”'. We expectr’ = 7(=2.25) to hold ag'/| — .
pinning model: the jump of the active site at the presentAlthough the measured value af’ in the range shown is
instant is strongly correlated to the jumps before. As a resuliarger (=2.9), the bending apparent in the lower right por-
what is needed is the full distribution function tion of the curve is consistent with an approach to the value
p(I[l,_1---15|17), which is the conditional probability dis- .
tribution that a jump of length occurs at=n given that a Qualitatively, the behavior of this function may be under-
jump of lengthl; occurred at=1, a jump of lengtH, oc-  stood thus. If the active site jumps a distahcat the previ-
curred att=2 and so on. The probability distributiga(l) is  ous instant, one can think of the interface as pinned by a DP
obtained by integrating out the other variablescluster with loops of average linear dimensiorl. Most of
1,15, ... l,—1. In order to assess the importance of thesethe interface would then be pinned while a portion of it fills
temporal correlations, we numerically determined the condiout a loop of linear dimensior|. This would imply that on
tional jump probability distributiorp(l’[l), the conditional average, any jump smaller théiis equally likely. On length
probability that a jump of length’ occurs given that at the scales larger thah the motion is like the original problem
previous instant, the active-spot jumped a distandeéigure  and hence the jump probability decays as a power law. This
8(a) presents our numerical measurement of this function fotine of argument would imply thap(l’|l) should be a scal-
the EBM. After the initial short-ranged decay, which is aing function ofl’/I. Figure &b) bears out this expectation.
result of the local backwetting move of the dynamics, the Another equivalent way of understanding the function
function is flat over a considerable range, and then decays gg|’|l) is using the “backward-avalanche” technique intro-
a power law. As evident in the figure, the range of the flatduced in[48]. A backward avalanche is defined as follows. If
region depends ohbut the value of the probability in the flat at times+ S a random numbef, is picked as the minimum,
region becomes independentldfor largel. In Fig. 8b) we  the magnitude of the backward avalanch&i§at time s the
show the scaling plot op(l’|l) obtained by plotting the random number picked was larger thép but for time s
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01§ -+ ' ' ] jumps of the active site. As Fig. 9 indicates, the function falls
i g : off as a slow power law. This is an indication of the long-
term memory in the system, as the function would decay
exponentially if successive jumps had not been correlated.

IV. PATTERN FORMATION IN THE INTERFACE
DEPINNING MODEL

F (sll)

A. Definition

active spot in this model is very correlated. One can then ask
whether this motion reorganizes the shape of the intelf@ace
1077 L . 0 equivalently the arrangements of particles and holes in the
1 10 100 1000 particle model corresponding to the EBNh any specific
S way. Below we will show that the correlated motion of the
growth spot in this model leads to the formation of a pattern
FIG. 9. The distributionF(s|l) of durations of avalanches for in height gradientgor equivalently the density of particles
jumps as defined in the text. For smhll F(s|l) decays exponen- of the interface.
tially (filled triangles as expected, since it is very unlikely that a The defining Eq(1) for height gradients can be written in
larger jump does not immediately occur. Aincreases, the cutoff terms of densities as
for the decay increase@mpty and filled circlesuntil for large
enoughl, the curves coincide, decaying as a powes™ L. W(r)y=(n(r+R(1))—p. 2

Oo i
Q . . . . .
. % As discussed in the previous section, the motion of the
o
Ooo

+r for r<S the value of the random number picked wasHere n(r) is the density at siteé and the angular brackets
smaller. That is, one goes back in time to the first instantienote a time average in the steady state.
when the random number picked is larger than the present This pattern is linked to the formation of a structure that is
one and this interval of time is the magnitude of thevery different from normal space-fixed patterns because it
backward-avalanche initiated at the present instant. If theefers to an origirR(t), which is moving around. In fact it
active site hopped a distanten the previous instant, this can be discernednly when the origin moves. An ordinary
would imply that the size of the spatial region affected by thespace fixed average is translationally invariant and satisfies
backward avalanche initiated at the previous instantls  (n(r))=p for any siter. Since the pattern is centered around
At the next time step any of three possibilities can occur. Ifthe site of activity, we will refer to it as the “activity-
the random number picked snallerthan the previous one, centered pattern’{ACP).
then the active site necessarily lies in the local region, which
has just been affected by the move. If the random number
picked is larger, then either the random number picked be-
longs to the same backward avalanche as the previous one, We studiedW(r) by Monte Carlo simulation in the
or it belongs to a bigger on@vhich therefore encompasses particle-hole representation. We studied systems of kize
the previous one In the former case, the active site is ranging from 2° to 216 The system was allowed to evolve
equally likely to hop anywhere in the region affected by thethrough 16— 10" configurations before measurements were
present backward avalanch@6,48 and hence the function made. In order to speed up the algorithm to locate the site
is flat up to a length~1. In the latter case, active-site hops with the minimumf, we used a logarithmic-bin search pro-
are in general larger, since the encompassing backward aveedure. Steady state averages were computed usib@
lanche is larger. The probability of having the active site hopconfigurations. While this number of configurations was av-
a distancd ;> is then related to the probability of finding a eraged over to get an accurate estimate of the decay expo-
backward avalanche of this spatial extent, and hence decayent, even an average over about 100 configurations indi-
as a power law. cates the presence of a strong density inhomogeneity clearly.
Another indication of the correlation in the jumps of the In the untilted case, the height profile is an even function
active site is the following quantity, which is the analog of [Fig. 1(&] andW¥(r) is an odd functiorfFig. 10(a)] decaying
an avalanche, for jump@ig. 9). Let the avalanche be initi- asymptotically as a power lawr|~? with =0.90+0.03
ated at an instang by a jump of magnitudé of the active (Fig. 10, insek In the tilted case as there is ne>—r sym-
spot. The “jump avalanche” lasts as long as consecutivemetry, V' (r) does not have a definite paritlfig. 1Qb)]. It is
jumps in the active site are less thlarThat is, the avalanche useful to separately analyze the even and odd functions
is of durationS if at time s the active site hopped a length V. (r)=[V(r)xW¥(—r)]/2. The odd part decays as
and for S consecutive instants after that, the hops in the¥ _(r)~|r|~?- with #_=1.04+0.05 (Fig. 10, inset The
active site are smaller thdnuntil at the S+ 1)th instant, it even part¥, (r)~—b(L)+a|r|~ %+ where, =0.46+0.05
hopped a distance greater tharThe analog of this quantity andb(L)—0 as the lattice size —« (Fig. 11).
for random numbers was first defined for models in the non- The density profiles of Fig. 10 correspond to the height
wetting invasion percolation regimi81,32 and later also patterns shown in Figs. 1 and 2. Qualitatively, the reason for
measured for the Sneppen mo@éh,35,36. The jump ava- this time-averaged structure of the height profile can be seen
lanche is a strong indication of the correlation in successivas follows. In the untilted case, on average, the active site is

B. Numerical results
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0.1} FIG. 11. A log-log plot of the Fourier transform of the even part
: of the density profile in the tiltedg=0.75) case, for the data ap-
pearing in Fig. 10. At lowq the function decays as a powerg~ ¢
with ¢=0.54 implying that at large, the behavior is a power law
M with decayr ~(*~ %),
' model. It is related to the motion of the active site, which
0-0200 rearranges the particles and holes in its wake. For example, if

the active site were to remain stationary at a given site for a
certain length of time, the dynamics is such that it would
FIG. 10. Density profiles in théa) untilted (p=0.5) and(b) ~ build up a pileup of particles to the left of the site and a
tiited (p=0.75) cases. Note that ifb), the value at the origin is pileup of holes to the right, i.e., it would create a density
larger than 0.75, indicating that the active site is more than nomishock around itself. In this section, we write down an inte-
nally likely to have a particle, because of the bootstrap effect disgral equation that provides a description of the pattern in
cussed in the text. Whil¢a) is an odd function ofr, (b) has no  terms of p(l), the probability that the active site hops a
parity and the even and odd parts can be studied separately. Thengthl in consecutive instants, as well as the local dynamics
inset shows the odd part of the profile in the untiltétied circles of interface readjustment.
and tilted (open circle} cases. Both decay as power laws though  |f the pattern is centered &(t) at timet, the dynamics
with diff_ering exponents. We used=16 384 and averaged over cguses two changes at the next instaht:A short-ranged
10° configurations. readjustment of the interface changes the profile fR{4).

located at the pealFig. 1(a)] wheref,’s that have not been 1he average density change at sRgt)+r is modeled
sampled earlier are most likely to occur; such a region is thufrough a density-increment functich(r), which is short
more likely to contain small values df In the tilted case ranged.(ii) The active site jumps a distande=R(t+1)
there is, in addition, a bootstrap effect at workp# 0.5, the ~ —R(t). Since the pattern is centered at the active site, the
active site is more likely to contain a particle. Given the result of(i) followed by (ii) is that the average profile repro-
dynamics, regions to the left are more often refreshed, makduces itself, except that it is centered at the shifted site
ing the active site likely to move in this direction and find R(t) +1. Both effects are incorporated into the integral equa-
itself amidst a particle cluster. The directionality of the ac-tion
tive site motion is evident in Fig. 6. This leads to densities
higher tharp on both sides of the active sif€ig. 1Q(b)] for +oo
p sufficiently different from 0.5. That particles are picked q’(f)=f [(V(r=)+®(r—1)]Ip()dl. 3)
more often than would be expected on the basis of the nomi-
nal density is evident from the fact that the value of the ] . )
density at the active spot is larger than For the density Thls_ equation can b_e solved using Fourier transforr_ns. In
pattern in Fig. 1(b), which corresponds tp=0.75, the Particular, the long-distance behavior of the p'atté'r(r) is
value of the density at the origin i (0)=0.84. relat_ed to the decay qd(l) _for largel, resulting in a scaling

In the next section we develop an approximate theoreticdlélation for the exponent in terms of the exponent. The
description for the exponents describing the decay of théletails of the analysis are given in Sec. V B below.

pattern in terms of the exponent which describes the long- ~ However, this equation provides only an approximate de-
ranged hops of the active site. scription. To understand the nature of the approximation

made, we define a “Ley-flight model,” which is similar in
V. THE INTEGRAL EQUATION spirit to.the models 0[2_0,34]. As in these models, .there is
FOR PATTERN EORMATION no explicit quenched disorder, but the effect of disorder is
modeled by a long-ranged jump probability distribution. For
As discussed in the previous section, a pattern in heighthis model, we show that the integral equati@ holds ex-
gradients or densities is formed in the interface depinningactly. Further, we can gain considerable insight into the

— o
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mechanism of activity-centered pattern formation by study- Nt
ing the effect of different decays of the jump functip(l) \P(r)zz Pini(r+R;))—p. 4
within the Levy-flight model. =1

That is, we add up the densities at a sitlor each configu-
ration that occurs in the steady state, having first shifted the
origin separately in each configuration so that the sifer

i every state is one that liesaway from the active site. From

The Levy-flight model is defined as follows. Consider a thjs is subtracted the average dengityThe above equation
one-dimensional lattice with particles and holes. We assumg equivalent to Eq(2), with the time average in the latter
that a jump probability distributiop(l) is specifieda priori:  being replaced by a weighted sum over configurations here.
if at t=0 the active site is located at a site at the next From examination of th& matrix, it is clear that in the
instant, it can lie a distanck away (i.e., atl+r) with a  case thap(l) is a constant independent bfas in ordinary
probabilityp(l). Evidently there are no temporal correlations stochastic processesll the P;’s are equal. As a result, from
in this model, since at every instant, the jump length is chothe definition, the ACP vanishes. However, while this is a
sen afresh from the distributign(l). Spatial correlations in  sufficient condition it is not necessary. There are instances
the active-site motion are, however, built in by hand since(see Sec. VIl when special symmetry considerations rule
p(l) is given. Once a particle or hole is picked for update,out any pattern formation. However, the presence of an ACP
the local rules are assumed to be the same as in the extrenagfinitely implies the presence of a nontrivigll); a pattern
bond model, i.e., the particléor hole exchanges position indicates correlations in the active-site motion.
with the nearest holéor particle to the left(or right). We will now derive Eq.(3) for the Levy-flight model.

We now derive an integral equation starting from theNote that the probability; ==,p(1)2;_,;P; where the prime
master equation for the hMg-flight model. We first define a on the summation implies that only those configuratipns
configurationi to be a set of integerd{n;(r)},R)) r  are considered in which the active sitd sites away from its
=1,... N whereN is the size of the lattice anR is the  position ini. Furtherj should transform té when the active
current position of the active site. The variable@) can site is updated. This equation follows from the master equa-
take the values 0 or 1 depending on whether the rsite  tion. The sum is over all’s.
occupied by a particle or is empty aRican take any value We can now substitute this in the right-hand side of Eq.
between 1 andN. The total number of states is, therefore, (4):

NT=N><’\‘CNp whereN,, is the number of particles. In the

usual manner, we characterize the steady state by a column B 5

vector |P). The entries of this column vector are the prob- \If(r)—2 p'Ei ni(r+Ri)§i Pi=p ®)
abilities P; for the configuration wherei=1,... N;. To

obtain the steady state, we need to solve the master equatigipq density at site in the configuratiori is multiplied by

d|P)/dt=W|P) whereW is an Nyx Ny matrix connecting  the sum of the probabilities of those configurations that lead
the different states. The dynamics that connects differenty it after a local update: a local exchange of a particle and

states is the following: The particlé@ole) at R is exchanged hole, and a subsequent jump of the active site of legth
with the nearest holéparticle to the left(right) as specified Hence we can write

earlier. Subsequently the active site now hops fiernto R
+1 with a probability p(I). The diagonal elements of the Nr+R)=n(r+R -+ di(r+R —I 6
matrix areW;; = — 1. The off-diagonal elements are given by (T R)=nr+R=D+ y(r+R =1 ©
Wi;;=p(l) if configurationi is connected to configuration

by an elementary update and a jump of the active site o

lengthl and byW;; =0 otherwise. Since the probabilif(1) d . !
: : = epends on the local update rules. It is defined by(&gand
is normalized 2p(1)=1] the sum=;W;; for each column of "o itterance between the two configuratidngnd j,

the matrix aplds up to 0. This is a requirement for any Sto'\Nhich are related by an update. This function is the same for
chastic matrix.

. I ' . this model as for the bond mod@tig. 12 since it depends
Every conﬁggranon can go toN_other conﬁgur_anons. only on the local update rules. In the EBM, it is a short-
Each of these dlffer fromin the positions of the particle and ranged function whose range is determined by the average
hole ex_c_hanged in th? elementgry update move, an_d also |8ngth of particle and hole hops. Later in this section we will
the position of the active site. Similarly there a&deconfigu-

. hat feed | f iorTh . f comment on circumstances in which this function can be-
rations that feed into any configurationThe construction o come long ranged.

these configurations is very similar to that carried out in the Substituting Eq(6) in Eq. (5), we find that the right hand
case of the low-noise Toom interface and related m0d6|§ide can be rewritten as e

[49]. However, unlike in that case, here the transition prob-
abilities are not all the same. As a result the steady state here
is very different from the product-measure steady state found v(r)=2 p(HhY [n(r=)+¢i(r—)—plP;. (7)
in [49] and is difficult to characterize for geneng(l). [ [

However, we are able to characterize one aspect of the
steady state by defining a quantify in the following man-  Using the definition of¥(r) again, we finally obtain the
ner: integral equation(3) for ¥ (r) in terms ofp(l),

A. Derivation of the integral equation
for the Lévy-flight model

}—|ere ¢(r) is a short-ranged functiofthis is related to the
‘density-increment” function appearing in E@3)], which
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0.1 (b) FIG. 13. The activity-centered patte®(r) in the Levy flight
- model for whichp(l) decays rapidly as 5% As evident in the
figure, there is a near complete segregation of particles and holes
about the active site. A system of size 1024 was considered and
o ~10° configurations were averaged over.
0'————‘/# - . .
D(r) . short-ranged readjustment functigifr). We solve the equa-
' tion using Fourier transforms.  Defining W (q)
=[T2e?™a"p(r)dr, etc. we find
- ®(ap@)
-0.1 . . . . . \I’(q)=f. 9)
40 0 40 1-p(a)
r

FIG. 12. The density-increment functieh(r) in the EBM for ~ Since we are mainly interested in the-0 behavior of Eq.

(@) untilted and(b) tilted cases. Due to particle-hole symmetry, the (9), we do not need the full functional form éf(q) but only

function is a short-ranged purely odd function(@ while ithas no  the leading order behavior.

specific parity in(b). In both cases, howevef®(r)dr=0 from Given a functiorp(l) the integral equation predicts a cor-

particle-hole conservation. We uséd= 16 384 and averaged over responding® (r). The large-distance behavior of the ACP

16x 10" configurations. thus depends on whethe(l) is short or long ranged. We
consider now three different cases for the functogh) and

V()= p(H[¥(r—1)+d(r—1)]. (8) solve for\if(q) using Eq.(9). We substantiate the predictions
! of the equation by numerically simulating the wyeflight

. . del.
Here we have defined an averaged functich(r) mo . i L
—S.P.(r). From particle conservation, it follows that Case 1 Consider first the case of an infinite-ranged).

[®(r)dr=0. For the symmetric case of half fillingy/2 The simplest case is whex{l) = 1/N, whereN is the number
particles andN/2 holes, the functiond is strictly an odd of sites in the lattice. This case corresponds to usual stochas-

function. However, this does not hold when the number oftiC processes. In this cap¢q=0)=1 andp(q+0)=0. This

particles is not equal to the number of ho|€sg. 12b)]. implies that¥ (q) =0 for q# 0 and is therefore a very short-
Thus we have been able to show that the integral equatioranged function in space.

(2) is valid for the Lavy-flight model. From the nature of the Case 2 Consider now the case whan(l) is a short-

model, it is clear that while spatial correlations in the activeranged function. We will consider the case when it is sym-

site motion are built in by hand, there are no temporal cormetric and hence for lowp(q) ~g2. Substituting this in Eq.

relations in the length of subsequent hops of the active S|teg) we find that‘if(q)~sgn(q)/|q|. This implies that¥(r)

Therefore the integral equation is exact only in such a case.

In the next section, however, we carry over some of theNSgn(r)' The particles and holes separate out completely

predictions of the integral equation to the EBM and find thatand the active site is located at the boundary between the

in some cases, it tallies quite well with numerical results. Inivggé -\I/-vhr:zrlstheea?c/tit\?e iﬂgﬁfttggi Ifs\tNaGt)i(;:r(])aanIdI?qr t::;" ggg'ﬂ%e
Sec. VI, we discuss briefly how to generalize E8). to in- y Y !

: . ction of the dynamics is to move all the particles from the
clude temporal correlations such as are present in the EBNﬁght of the active site to its left. Eventually, this leads to a

total separation of particles and holes. This picture is modi-
fied only slightly when the active site executes a localized

We now investigate the predictions of E) for ¥(r) in ~ motion about any lattice site, and hence for a short-ranged
terms of a given active site hopping probabiligfl) and the p(l) (Fig. 13.

B. Analysis of the integral equation
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Case 3 We now come to the case of interest for the
interface depinning model, i.e., whexl) decays as a slow
power law. If p,(1)=1/1|"+, Eq. (9) predicts that¥(r)
~sgn()|r|?-. The exponentsr and §_ are related by the

scaling relatiord_ + 7, = 3. This is to be compared with the
numerical estimated_+ 7, =3.15 for the extremal bond

model in the untilted case. Consider now the case when none

of the functionsp(l),¥(r), and®(r) has a definite parity.
This is relevant for the tilted interface in the Sneppen model
Since®(r) is short rangedﬁ)(q)~i¢1q+ $,0° as q—0.
There is nog, term, as the elementary step of hopping a
particle or hole conserves particle number, implying

f®(r)dr=0. Theq—0 behavior ofp(q) is determined by

the asymptotic power-law decays of the even and odd parts

p-(1) as|l|—o. Thus we havep, (q)~1—A|g|™ 1. We
might have expecte@_(q)~Bg+Csgn@)|q|™ ~*, but in
fact the mean velocityf 1P (l)dl of the active site vanishes
(as mentioned in Sec. )implying B=0. Thus the integral
equation predicts that to leading order both, (r) and
W _(r) decay as powers- |r| =, with

0, +2m, —7_=3
and
0_+m7,=3.

The prediction, + §_=3 compares quite well with the
numerically determined values 3.04 fé#_(r) in the tilted
case. Fol (r), however, the numerically determined value
of 0, +27,—m_(=1.97) deviates substantially from the
predicted value 3. The likely reason behind the discrepanc
is explained in the next section.

C. Drawbacks of the approximation

The integral equation(2) is exact for the Ley-flight
model, but only approximate for the EBM of interface de-
pinning. Here we briefly run over the nature of the approxi-
mations made, and possible directions for improvement.

One sort of approximation is the neglect of correlations
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FIG. 14. The activity-centered patteti(r) for a Levy flight
model with the further constraint that only sites containing particles
are chosen. The pattern generated with these rules resenbles
in the EBM more closely than if the rules were implemented with-
out the constraint. This fits in with our conjecture as to why the
integral equation does not describe the even part of the pattern.

Another point to note is that we have always taken the
density-increment functiod® to be short ranged. Insofar as
we are interested in the EBM, this is certainly so. However,
in the Levy-flight model, any power larger than 3 results in a
pattern like the one shown in Fig. 13, with a segregation of
particles and holes and not one decaying as a power as pre-
dicted by the integral equation. The reason for this is that in
this case, the mean squared dista(Ré&(t)) covered by the
active site in time is finite. Hence for a large system, this is
like a short-ranged motion and leads to particle hole segre-
gation. In the process, as particle clusters build up, the
Yensity-increment function is no longer short ranged.

Lastly, while in the EBM, the probability distribution of
jumpsp(l) arises naturally from the dynamics, in thévye
flight model we put in the spatial correlation in the active site
motion by hand. In the following section, we try to remedy
this point by modifying the integral equation by writing a set
of coupled equations.

D. The coupled equations

between lengths of successive jumps; as we saw in Sec. lll, A drawback of the Ley-flight model is that the function
these correlations are very marked. The extension of the ing(l) has to be supplied from the outside. We try to rectify

tegral equation to include such correlations is discussed i
Sec. VI B.

As noted in Case 3 of Sec. V B for tilted interfaces (
#0.5), the pattern is not well represented by E2). even
gualitatively. The reason for this is that the- 0.5 pattern in

this by writing a set of coupled equations that predir)
andp(l) in terms of each other.

In order to do this, we need to understand the probability
that a certain portion of the pattern is visited by the active
site. In the EBM, the site visited last has the largest probabil-

the EBM is formed due to a feedback effect, which is miss-ity of being visited again since it is most likely to have the

ing in the Levry-flight model. If p>0.5, then within EBM

dynamics, particlesor holes if p<<0.5) are picked more of-
ten than justpNy, times in Ny, tries. This condition is not
incorporated in Eq(3) at all. To test how important this
effect is, we simulated the \vg-flight model with the further

least random number. The more often a region is visited, the
more the random numbers associated with sites in that region
are refreshed and hence the more likely it is that the mini-

mum random number lies in that region. Since the dynamics
creates a particle excess on the left of the active site and a

constraint that if a site chosen for growth does not contain @orresponding paucity on its right, a density shock is built up
particle, it is discarded and the search is continued until a siten that region. The extent of the shock is directly propor-
containing a particle is found. This leads to a pattern thational to the length of time spent by the active spot in that
more closely resembles that in tpe:0.5 EBM, in that the region. The larger the shock, the larger the density differ-
even part of the pattern is much more prominent than the oddnce, and hence the larger the derivativedof Hence the

part (see Fig. 14 effect of a region being visited a large number of times is
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precisely thatdW/dr is large. But as explained above, the 0.9
larger the number of times a site is visited, the larger is the
probability of its being visited again. Thus we conjecture that
the probability of visiting a region a distant@away from the
active site is proportional to the magnituded¥/dr in that 0sl
region, and write the following equations:

Y(r) |

\Il(r):fdlp(|)[q’(r_|)+q)(l’—|)] (10) " :
0.7¢

* > 300000

00000,

and

’ ( 1 1) -200 (% 200
r=|

d
dr

p(l)y=N"1

FIG. 15. Evidence for the dependence of the ACP on the length
whereN'= [|dW/dr| is the appropriate normalizing factor. of the previous jump of the active sit#(r) is shown with time-
Equation(10) is the integral equation that we derived in averaging done ovefl) all configurations(open circley, (2) only
the last section. Equatiof1l) now definesp(l) in terms of  configurations resulting after a jump in the active site of magnitude
the pattern¥’. The details of the dynamics of particle-hole 50 (filled triangles, (3) only configurations resulting after a jump of
exchange in this model make this a reasonable premise #ngth 100(open triangles and (4) only configurations resulting
explained above. after a jump of length 30(filled circles. As is evident, the pattern

Let us compare the results of the coupled equations witigets more and more squashed until it barely existghinA system
those for the untilted interface. ¥ (r)~|r|~? and p(l) of size 1024 was used and10® configurations were averaged over.
~|1|~™, we saw in Sec. V B that E¢10) implies relation
7+ 6=3. Further, Eq.(11) predicts the relatiord+1=.
The solution isT=2 and #=1. This compares quite well
with the value of the exponents=2.25+0.05 and6=0.9
+0.03 found numerically for the EBM.

stant as well. Now the off-diagonal elements of the transition
matrix elementdV;;=p(1'[l) if configurationj has resulted
as a consequence of a jump of the active site of lehgthd

is connected to configuratianby an elementary update and
a jump of the active site of lengtti. The functionp(l’|l) is
just the conditional jump probability already introduced in

VI. TEMPORAL CORRELATIONS IN THE INTERFACE Sec. .
DEPINNING MODEL Following the same procedure as before, we get an equa-
A. Time dependence of the pattern t|?r|1 fort;]PIV (r), the pattern resulting from an active site hop
of lengthl:

The pattern, as defined earlier, is obtained by a straight
time average over all configurations, taking care to shift the , , ,
origin appropriately at every instant. It is interesting to ask ‘I’|,(r)=2 P IN[W(r=1")+®y(r=11]. (12
how the pattern changes if we consider only those configu-
rations that occur after very large jumps of the active @te  Keeping correlations up to one time step back gives the pat-
equivalently, only those configurations for which the mini- tern a nontrivial dependence on the jump lengthThe in-
mum random number is very close to the largest possible tegral equatior(3) gives only a trivial dependence &f(r)
strong dependence of the pattern on the configurations avesn|’.
aged over is evident in Fig. 15. The pattern gets more This procedure can be further generalized by going back
squashed as the jumps in the active site leading to the comne more step in time and keeping the location of the active
figuration get larger. This implies that the pattern ceases tgite two instants back.
exist at stoppers and builds up again as the interface pierces This leads to an equation of the following sort:
through. The actual dynamics of pattern collapse and buildup
is an interesting subject for further study. _

It should be recalled that long jumps occur much more \Iful(r)—% P10, 1, (r =D+ @y (r=D)],
infrequently than short jumpd-ig. 7); the probability of oc-
currence of a stopper is thus very low. The time average invherep(l|14|1,) is the conditional probability that the active
the definition of the patterfEq. (1)] is dominated by con- site hops a length given that at the previous instant it
figurations between stoppefwhen the active site is moving hopped a distanch and in the instant before that, a length
within the loops of the directed percolation netwpriather  |,. Similarly, \If|1,|2(r) is the pattern formed when averaged
than those at stoppefsvhen the active site is on the back- over configurations that result after two consecutive jumps of

bone of the network I, andl,, respectively.
HereE,l\If,',l(r)=\If|(r). Keeping the time sequence of
B. A Hierarchy of integral equations jumps leads to an infinite hierarchy of equations:

The integral equatiofi3) can be modified to include cor-
relations in time. To do this, we enlarge the definition of a ‘P(r)=z E p(l'|D[¥ (r=1")+d,(r—1")], (13
configurationi to include the active site at the previous in- T
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102 |

= Ne)

1004 | °,

C(Ar)

the particle conservation sum rufeC(r)dr=0]. This hap-
pens because subtracting out the quantftyrom the corre-
lation function is not correct, since the presence of the ACP
causes a density inhomogeneity in the medium that cannot be
accounted for by subtracting out a constant quantity. To ac-
count for the presence of the pattern we consider the corre-
lation function

L(r,Ar)=(n(r+R(t))on(r+Ar+R(t))), (16)

whereR(t) is the location of the active site,is the distance
from the active site, andén(r+R(t))=n(r+R(t))—p
—W(r) is the fluctuation around the average ACP. A reason-
able expectation is that thén’s are independent for large
separationdr, i.e.,

. : L(r,Ar)={n(r +R(t)))(on(r +R(t)+Ar))—0 (17

as Ar—o. Now consider averaging the functidn(r,Ar)
over r. On performing a space average over the right-hand
side of Eq.(16), we note that

10°6 {{on(r+R(1))Sn(r+Ar+R(1)))}={(on(r)dn(r+Ar))}.
(

' 18)
1 10 100 1000
A Thus this implies that{(n(r)n(r+Ar))}—{(p+¥(r))(p
I +W(r+Ar))} approaches zero dsr — <. This predicts the
saturation value of the correlation function

FIG. 16. Two-point density-density correlation function for
=4096 (open circleg and forL=16 384 (squares The saturation
value is reduced stronglfilled circles on subtracting the contri-

bution of the ACP. This lends support to the idea that the one-poinll_ hi b d thi . f 1h .
correlation function defined by the ACP enters the definition of the o test this, we subtracted this estimate of the saturation

connected part of the two-point correlation function. The data weré/@lué fromC(Ar) and found that the saturation effect is in
obtained by averaging over 4@onfigurations. fact suppressed strongl¥ig. 16, supporting our interpreta-
tion. It is possible that another slightly different definition of

the pattern would eliminate the slight shoulder, which re-
mains in Fig. 16, after subtraction @

Usually, if the two-point correlation function saturates as
the separation between the two points is increased, the satu-
L= (15)  ration value is associated with a nonzero value of the space-
2 fixed average(n(r’))—p. The unusual aspect here is that

The integral equatiof) corresponds to curtailing this hier- there is saturation even though(r’))=p.
archy at the first Step by assuming tl'm(r —| ’)N\If(r We studied the manner in Whl(ﬂil(Ar) _CsatapproaCheS
—1"y andp(l’[N=p(l"). zero asAr—. In the tilted case, we found that the correla-
tion function decays exponentially by studying a model
VIl. TWO-POINT CORRELATION FUNCTIONS where the rules are the same except that only particles are
IN THE INTERFACE DEPINNING MODEL picked. This corresponds to a case of extreme tilt and is
similar to the case studied bi6]. In the untilted case,
C(Ar)—Cs¥decays as a power lawr ~* with k=0.6.

C¥={(p+W(N))(p+P(r+An))}—p? (19

W)= 2 pUllll)[W, 1, (r=D+ @y, 1, (r=D],
v (14)

v,

The activity-centered pattendr(r) defined in Eq(1) is a
one-point correlation function, defined with respect to an er-
ratically moving origin. As a result, it has a strong effect on
the customary, space-time averaged two-point correlation
function

VIIl. PATTERNS IN OTHER MODELS

In the extremal bond model of interface depinning, we
have described the activity-centered pattern in height gradi-
ents, which forms as a result of correlated motion of the
active site. However, this is not the only sort of pattern that
Herer’ is a fixed site on the lattic€, - -) stands for a time is formed. There is pattern formation also in the value of the
average, and- - -} stands for an average over all sit€s average random numbdr at a site, as a function of the
Numerical results foiIC(Ar) for a tilted interface show distance from the active site. In analogy with Eg), we

that it saturates at a val@®® which decreases with increas- define this pattern in random numbers as

ing sizeL (Fig. 16. [At much larger values of, propor-
tional to the system sizk, C(r) changes sign, as a result of Wi(r)=(f(r+R(1)))—{(f)}. (20

C(AN={(n(r")n(r’'+Ar))}-p*
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FIG. 17. The pattern in random numbers for the EBe un- q
tilted case in (a) real spacgb) Fourier space. The Fourier trans- )
formed function appears to diverge as a pogef’ with ¢=0.49 FIG. 18. The pattern in random numbers for the Bak-Sneppen

implying a power-law decay-r ~1~ 9 at larger for the functionin ~ Model for evolution ina) real spaceb) Fourier space. The Fourier
real space. The above data are for a system oflsiz8192, aver- ~ transformed function appears to diverge as a powvef with ¢
aging over 10 configurations. =0.24 implying a decay exponent {l¢) for the function in real
space. This pattern could signify, for instance, the average fithess of
Here f(r + R(t)) is the random number at a distancérom a species as a function of the distance from the currently mutating
the active site and the time average - ) and space average ©ne. The above data are for a system of dize8192 and 10
{---} are performed over configurations in the steady stateconfigurations have been averaged over.
as before.

Moreover, patterns are found in other extremal models apied by a particle, the particle exchanges place with the first
well. Figures 17, 18, and 19 show theatterns in the EBM, hole to its left, and if the site is occupied by a hole, the hole
the Bak-Sneppen model of biological evoluti88], and the also exchanges place with the first particle to its left. At half
Zaitsev model of low-temperature creg@7], respectively. filling, there is no net current. This model is the most sym-
Numerically, it is difficult to directly extract the manner in metric of those considered so far and there is no density
which the patterns shown in Figs. 17-19 approach theipattern formed. However, as in the Bak-Sneppen and the
asymptotic values, as fits to power-law decays are very serfaitsev models, there is a nontrivial pattern in random num-
sitive to the assumed saturation value. We avoided this prokbers in this model.
lem by studying the Fourier transforms of the functions, as We emphasize that the feature of the dynamics that is
the saturation value influences only the single Fourier modeesponsible for activity-centered pattern formation is the ex-
atg=0. In all three cases, the Fourier transforms show eviistence of correlations in the motion of the active site. Ex-
dence of power-law behavior as—0, implying power-law  tremal models constitute just one class in which there are
approaches of thé patterns to their respective saturation such correlations. An example of another such class is mod-
values in real space. However, we have not developed agls of certain types of reaction-diffusion systems, where the
analytical description of thé patterns in any of these mod- activity is quite constrained and correlated. In another physi-
els. cal context, it would seem that coherent structures that form

Pattern formation thus seems to be generic to extremah turbulent flows[51] may well be described by activity-
models. However, there are instances when considerations oéntered patterns. In our definition of the pattern, we take an
symmetry rule out the formation of a pattern. This is exem-average over all times, keeping track of the moving structure.
plified in the following model, similar in spirit to that con- This is to be contrasted with previously used methods to
sidered in[50]. The rules of the dynamics are the same as indentify such moving structures, based on the notion of con-
the EBM, random numbers are assigned to every site and thiditional sampling, namely, averaging only over those time
minimum is picked, except that there is no net current ofzones in which the activity is at a particular space-time lo-
particles as there was in the EBM. If the site picked is occu-<cation[51]. Our definition takes configurations at all times
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0.85 bution of active-site jump lengths. The integral equation

| — | could be derived by writing an extended master equation for
» the Levy-flight model, making it clear that the equation is
i exact only when there are no temporal correlations between
0751 o successive jump lengths. In the extremal bond model, how-
R ever, such correlations are strong. We have shown that a
\H(r) I correct description of the pattern, involving temporal corre-
- lations, necessitates keeping an infinite hierarchy of equa-
065 (a) tions. Terminating this hierarchy at the very first step results
’ - in our integral equation. It would be of interest to understand
how much one can better this description by keeping more
00 ' ' o ' ' 00 steps in the hierarchy.
r The activity-centered pattern is a one-point function, and
so enters the definition of two-point correlation functions.
(b) The physical point is that the density inhomogeneity caused
by the pattern must be taken into account, by subtracting the
relevant quantity from the density-density correlation func-
* . tion. If this is not done, and the square of the nominal density
p is subtracted instead, the correlation function can exhibit a
‘II\{(CI rather unusual sort of finite size effect. This is an interesting
point since the space-fixed time-averaged density at a site is
1t p, and it is only the density as defined in E&) with respect
to the moving active site that is different from the nominal
density. Yet the space-fixed two-point function is affected by
this “hidden” pattern.
: The presence of the pattern clearly points to a nonhomo-
0.001 q 1 geneity in the interface: the region around the active site
looks very different on average from the region far away
from it. For instance, we expect there to be a larger length of
FIG. 19. The pattern in random numbers for the Zaitsev modeinterface in a region of fixed size around the active site
in (a) real spaceb) Fourier space. The Fourier transformed func- than in a region opposite it. We monitored mean squared
tion appears to diverge as a povegr? with ¢=0.26 implying a  fluctuations of the height around the instantaneous average in
decay (- ¢) for the function in real space. The data shown are forregions around and opposite the active site, and found a pro-
a system of sizé = 2048, with an average over’lOonfigurations. nounced differencéfactor =2, for both tilted and untilted
, ) . . . interfaces withx=256, L=4096). This effect is smaller at
into account, but requires a shift of the origin at every in-gionners in keeping with our finding that the pattern itself is
stant. suppressed there. This excess length of interface associated
with the activity-centered pattern may provide a useful way
IX. SUMMARY AND CONCLUDING REMARKS to identify the active region in experiment.
We have introduced a variant of the Sneppen model o Fina_llly, it was p‘“f‘ted out that. activity-centered_ pattern
iormatlon may occur in a wide variety of other physical con-

interface depinning — the extremal bond model — and hav . . .
studied the effect of the dynamics of the growth process ofEXts, ranging from low-temperature creep of dlslocatlons_ to
[Structures in turbulent flows. We have presented numerical

the shape of the interface. Our principal result is the obse i for thi ¢ of patt ¢ tion i b p
vation that there is a nontrivial structure that forms in the€V!C€NCE TOr this SOrt of patiérn formation in & number o
ther extremal models. But more generally we expect

interface, and that moves along with the active site. A sim |Pther
g P tivity-centered patterns to form whenever there are strong

time average of the height gradients, measured in a frame Iati bet ve locati f th i it
reference that moves with the active site, defines the activity<C' €'alions DEWEEN Successive focations of the aclive site.

centered pattern that serves to quantify the structure. Our
numerical study shows that the pattern has a tail that decays
as a power law at large distances. We acknowledge helpful discussions with J. K. Bhatta-

An understanding of the mechanism underlying activity-charjee, D. Dhar, G. I. Menon, and M. K. Verma. We are
centered pattern formation was obtained by writing an integrateful to Goutam Tripathy for help with several of the fig-
gral equation that relates the pattern to the probability distriures.
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